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Fig. 1. a. Overview of the diverse wood species covered by theMokume dataset. b. This data is used for inverse modeling of solid wood textures from the
exterior cube photographs. Our method first evaluates a neural model that converts the exterior color photographs into 2D annotations of the annual ring
pattern. We then use optimization to compute a compatible procedural growth field (GF) that assigns a time to every 3D position. This time value denotes
when the associated material was added during the tree’s growth. The annual-rings are iso-curves/surfaces of this growth field. We showcase two ways to
transform this representation into a detailed 3D texture: an efficient inverse procedural model (Proc) with support for point-wise evaluation, and a versatile
but resource-intensive neural cellular automaton (NCA).

We present the Mokume dataset for solid wood texturing consisting of 190

cube-shaped samples of various hard and softwood species documented by
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high-resolution exterior photographs, annual ring annotations, and volumet-

ric computed tomography (CT) scans. A subset of samples further includes

photographs along slanted cuts through the cube for validation purposes.

Using this dataset, we propose a three-stage inverse modeling pipeline

to infer solid wood textures using only exterior photographs. Our method

begins by evaluating a neural model to localize year rings on the cube face

photographs. We then extend these exterior 2D observations into a globally

consistent 3D representation by optimizing a procedural growth field using

a novel iso-contour loss. Finally, we synthesize a detailed volumetric color

texture from the growth field. For this last step, we propose two methods

with different efficiency and quality characteristics: a fast inverse procedural

texture method, and a neural cellular automaton (NCA). We demonstrate

the synergy between the Mokume dataset and the proposed algorithms

through comprehensive comparisons with unseen captured data. We also

provide ablations and quantitive evaluation of individual components of our

pipeline. The Mokume dataset, our code, and reconstructions are available

at www.anonymous-url.org.

CCS Concepts: • Computing methodologies→ Volumetric models.

Additional Key Words and Phrases: material texturing, procedural modeling,

procedural texturing, neural cellular automata, wood
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1 INTRODUCTION
Wood is an ubiquitous material in real and virtual environments.

Natural wood surfaces exhibit mesmerizing textural detail and color

variation that impart a sense of warmth and comfort to humans. In

this work, we seek to characterize the space of textures originating

from the abundance of tree species and the complex relationship

between appearance and the angle and position of cuts in wood.

Previous wood datasets imaged localized 2D regions for species

identification and tree-ring dating [De Blaere et al. 2023; Fabijańska

et al. 2017]. In contrast, the ability to map wood texture onto objects

without causing distortions depends on 3D solid wood represen-

tations that assign an albedo value to positions in space. Compre-

hensive datasets of this nature are not available, hence prior wood

texturing methods have relied on few examples, often unique to

each study [Larsson et al. 2022; Liu et al. 2016; Marschner et al. 2005].

We present the Mokume dataset to provide this critical ingredient.

Mokume, named after the Japanese word for wood grain, com-

prises 190 physical cube samples with a side length of 4.0 cm. The

samples were taken from 17 different hard- and softwood species,

and exhibit diverse anatomical patterns, imperfections, and cut-

out placements. Each sample is documented by external surface

photographs with annotations of the annual rings, and volumetric

computed tomography (CT) scans. A subset of 38 samples were

cut to photograph an internal surface for validation purposes. The

Mokume dataset can support data-driven approaches and enables

comprehensive evaluations and robust method comparisons.

Building on this new dataset, we further propose and evaluate

an inverse modeling pipeline that infers solid wood textures based

on exterior photographs. We address this challenge in three stages:

the first localizes 2D annual rings in each input photographs. The

resulting information is used in the second step to construct a con-

tinuous procedural growth field (GF) that maps 3D positions to a

scalar value representing the time when the associated material

was added during the tree’s growth process. This field roughly en-

codes the distance from the tree’s centerline (“pith”) and further

accounts for distortions due to uneven growth. The annual rings

are iso-surfaces of this field. The final step uses the growth field to

synthesize solid wood textures.

Unlike previous methods for inverse wood texturing that make

assumptions about the location of the pith axis [Lefebvre and Poulin

2000; Nindel et al. 2023], or require manually traced numbered an-

nual rings as inputs [Larsson et al. 2024], our method can directly

and robustly infer the growth field from external photographs and

annotations of knot centers (if present). We trained a U-Net on

the Mokume dataset to extract annual rings from the external pho-

tographs, to which we fit a volumetric procedural growth field. In

addition, unlike forward procedural wood textures that use noise to

create distortions [Liu et al. 2016], our model is parameterized by

the tree’s varying radial growth speed, giving sufficient control to

enable the model to be fit to reference data. Moreover, we propose a

differentiable iso-contour loss that measures the deviation of growth

field values along extracted target annual rings, which is effective

for inferring the pith axis and distortions.

With the growth field at hand, we showcase two approaches to

synthesize a detailed solid wood texture: an extended procedural

model that further accounts for detailed features such as pores and

rays, and a neural cellular automaton (NCA) that learns an update

rule to iteratively create the desired structure [Mordvintsev et al.

2020]. We optimize both models using style-based losses to produce

detailed and realistic textures. The two models occupy opposite

quadrants of the quality/efficiency design space and serve to demon-

strate the varied applications of theMokume dataset: the procedural
model is memory-efficient, editable, and requires a single pass, while

the NCA is highly parameter-efficient and can reproduce fine details

if significant computation and memory usage are acceptable.

We present qualitative results by reconstructing solid wood tex-

tures for each of the 38 samples in our test dataset, comparing the

inferred texture of both models to the slanted cuts through the

physical cubes. We further evaluate specific components of our

framework in a series of quantitative experiments and ablations.

2 RELATED WORK
This section discusses prior work on datasets (Section 2.1), texturing

(Section 2.2), and wood modeling and analysis (Section 2.3).

2.1 Datasets
2.1.1 Material appearance. Most prior appearance datasets were

curated to support (SV-)BRDF reconstruction of diverse material

types such as leather and cloth [Aittala et al. 2015; Henzler et al.

2021; Nielsen et al. 2015]. One notable exception is the work of

Marschner et al. [2005], who fit a specialized wood SVBRDF to a

dataset comprising five samples. This study focuses on volumet-

ric structure and color, leaving 5D spatio-directional reflectance

modeling for future work.

2.1.2 Wood analysis. Various wood datasets cater to applications

such as species identification, abnormality detection, and dendrochrono-

logical measurement (i.e., tree-ring dating). Datasets for species iden-

tification typically include classified optical scans of small patches

of end-grain surfaces [De Blaere et al. 2023], tree bark [Warner et al.

2024], or CT scans [Kobayashi et al. 2019]. Another dataset was de-

veloped to analyze the effect of surface preparation (the grit of sand

paper and type of saw) [Ravindran et al. 2023]. Datasets for abnor-

mality detection are typically made up of labeled images of different

surface defects of solid wood or wood veneer, such as knots and

cracks [Kodytek et al. 2022; Shi et al. 2020b]. Finally, dendrochrono-

logical datasets [Fabijańska et al. 2017; Wu et al. 2023] provide strip

images in the outward direction from the pith on cross-section of a

stem, often including annual ring annotations.

While the above datasets limit photographs and annotations to

localized regions of horizontal cross-sections, the Mokume dataset
provides comprehensive cross-sectional coverage, capturing all sides

of samples taken in various orientations relative to the pith.
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2.2 Texture Modeling
2.2.1 Procedural texturing. Procedural texturing, first introduced
by Peachey [1985] and Perlin [1985], involves generating a mate-

rial texture through an algorithmic process rather than referring to

explicitly stored data. This approach yields a compact and editable

representation capable of producing variations at a low compu-

tational cost, and remains a widely used technique. Given these

advantages, procedural texturing is particularly suitable for solid

textures that exhibit high natural variation, such as wood. The func-

tions for generating various wood features are well understood,

owing to Liu et al. [2016], who proposed a comprehensive set of

forward functions for generating pores, rays, and light reflections

from fiber directions, while others proposed a procedural function

for knots [Larsson et al. 2022]. Rather than proposing an improved

procedural wood texture model, our target is the inverse problem.

2.2.2 Inverse procedural texturing. While forward procedural meth-

ods focus on designing parameters to generate a desired appearance,

inverse modeling seeks to automatically discover optimal param-

eters to ensure that the generated output matches a given target.

In computer graphics, this technique has been widely explored; for

example, in inverse differentiable rendering [Kato et al. 2020; Li et al.

2018], material or scene parameters are optimized through gradients

of the rendering function, enabling tasks such as volumetric mate-

rial capturing [Gkioulekas et al. 2013], caustic design [Nimier-David

et al. 2019], color reproduction [Nindel et al. 2021], and geometric

optimization [Liu et al. 2018; Nicolet et al. 2021].

Node-graph representations of procedural shaders, have advanced

significantly, evolving from classification or regression for predict-

ing node graph parameters [Hu et al. 2019], later extended to differ-

entiable or semi-differentiable pipelines for material learning [Hu

et al. 2022a,b; Li et al. 2023; Shi et al. 2020a]. Beyond parameter fitting,

other systems enable generative node graphs [Guerrero et al. 2022]

and even prompt-guided searches of these graphs [Hu et al. 2023],

achieving near-photorealistic reproduction of diverse materials.

2.2.3 Solid texture synthesis. Creating a solid texture from a 2D

reference image is a classical problem [Kopf et al. 2007; Kwatra

et al. 2005]. Recent work has extended solid texturing approaches to

support inverse modeling through gradient-based learning. Henzler

et al. [2020] train a coordinate-to-color mapping (MLP) by feeding

multi-frequency noise as input, and Portenier et al.[2020] inject

noise into hidden layers for richer outputs. Likewise, Gutierrez et al.

[2020] use a 3D CNN that transforms random noise into volumet-

ric textures. However, while these methods focus on synthesizing

visually plausible 3D textures from a 2D reference, they do not

incorporate wood-specific growth patterns or aim for a faithful vol-

umetric reconstruction. To address this limitation, our approach

leverages wood anatomical priors, such as the pith axis and annual

ring distortions, to recover the interior of a real wood sample from

its external faces.

2.2.4 Neural cellular automata. Neural cellular automata (NCA),

proposed by Mordvintsev et al. [2020], are inspired by reaction-

diffusion (RD) systems and classical cellular automata (CA), adapting

their local update principle while substituting the traditional hand-

crafted rule with a small neural network. The model is unrolled

for multiple iterations, and trained end-to-end using backpropaga-

tion through time and a style-based loss to synthesize a reference

textures. This paradigm is effective for producing self-organizing

textures [Niklasson et al. 2021] and has been extended for generating

dynamic textures [Pajouheshgar et al. 2023] or texturing 3D meshes

directly [Pajouheshgar et al. 2024b], showcasing the flexibility of

NCAs in producing complex patterns from simple local rules. This

study demonstrates that a natural extension of NCAs to the 3D volu-

metric setting, combined with our proposed wood-specific priors, is

a highly effective model for synthesizing realistic and faithful solid

wood textures.

2.3 Wood Modeling and Analysis
2.3.1 Inverse modeling. Two previous studies [Lefebvre and Poulin

2000; Nindel et al. 2023] tackle the backward procedural wood tex-

turing problem specifically, and show a few successful outputs. How-

ever, neither handles knots or texture details (pores, rays). They also

make severe assumptions about the pith axis location. Specifically,

they determine the pith location analytically by identifying the

largest orthogonal distance between annual rings, which holds only

for a subset of cutout poses. Moreover, [Nindel et al. 2023] extracts

contours as a first step, using curved Gabor filters, which, while

not requiring training data, is dependent on the image gradient and

therefore not robust against diverse wood patterns where features

such as rays are superimposed on the annual rings.

Larsson et al. [2024] proposed a learning-based method for infer-

ring a (non-procedural) volumetric texture based on external surface

information. Although the problem setup is analogous to ours, there

are key technical differences. First, while they require manually

tracing numbered contours on the input photographs, we circum-

vent this requirement by automatic extraction of contours. Second,

for global structure inference, they train a model on procedurally

generated data (without knots), and optimize the parameters of the

trained model, creating a neural growth field. In contrast, we opti-

mize the parameters of a procedural growth field directly, owing to

our proposed iso-contour loss. Third, for colored volume synthesis,

they independently apply 2D style-transfer on each volume slice,

which does not guarantee 3D consistency. Instead, we propose two

other approaches: procedural modeling of detailed structures such

as fibers, pores, and rays, and synthesizing a color volume using

NCA.

2.3.2 Growth field. A growth field representation of wood material

analogous to ours was used in previous works, modeled procedurally

[Larsson et al. 2022], using a neural model [Larsson et al. 2024], or

by evolution over numerous time-steps [Kratt et al. 2015; Mann et al.

2006; Sellier et al. 2011].

2.3.3 Pith detection. Pith detection is a critical task in wood engi-

neering, essential for modeling wood growth patterns to evaluate

mechanical properties and optimize material usage. The typical

problem addressed involves estimating the pith point in a 2D image

captured in a plane roughly perpendicular to the pith axis, whether

a photograph of the end of a log [Kurdthongmee and Suwannarat

2019; Norell and Borgefors 2008; Schraml and Uhl 2013] or a CT

image of a radial cross-section [Boukadida et al. 2012; Gazo et al.
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2020; Longuetaud et al. 2004]. In contrast, we estimate the 3D axis

of the pith based on images of external surfaces facing in various

directions.

3 WOOD ANATOMY AND TERMINOLOGY
This section presents key terminology to explain and classify key

features of wood textures (Figure 2), starting with high-level geome-

try and moving into small-scale regular patterns. These wood-tissue

types introduce distinct color patterns, shapes and arrangements.

Their prevalence and visual impact vary by tree species. We further

introduce prevalent occasional features, often considered imperfec-

tions.

Diffuse-porous 
hardwood

Diffuse-porous hardwood 
with rays

Ring-porous 
hardwood

Ring-porous 
hardwood with 

rays

Rays

Softwood
(SW)

Pores

Knot

Annual ring

Pith

Earlywood
Latewood

Sapwood

Heartwood

Fig. 2. Terminology of wood features.

• Pith is the innermost center skeleton of a tree.

• Annual rings are formed by alternating layers of early- and

latewood. Earlywood, which grows in spring, appears lighter,

while latewood, which forms later in the year, appears darker.

This alteration creates a pattern of concentric circles in the radial

views and parallel bands in the tangential plane.

• Pores, also known as vessels, are tube-like structures extending

vertically. Pores appear as tiny circular openings in radial view,

and elongated openings in the tangential plane.

• Rays are thin, ribbon-like structures extending radially from the

wood’s pith. Rays are visible as fine lines in a radial view and

patch-like dots in the tangential plane.

We identify five categories of wood based on the visibility and

arrangement of the above features (see examples in Figure 4). The

abbreviations used below are as follows: SW for softwood, HW for

hardwood, DP for diffuse-porous, RP for ring-porous, and R for rays:

• Softwoods (SW). The annual rings are typically distinct from the

early- and late-wood color contrast, while both pores and rays

are indistinct.

• Diffuse-porous hardwoods (HW-DP). Pores are distributed
relatively evenly while the annual rings are distinct from the

early-to-late-wood color contrast like in softwood.

• Diffuse-porous hardwoods with rays (HW-DP-R). Same as

previous but with distinct rays.

• Ring-porous hardwoods (HW-RP). The annual rings are dis-
tinct from the pores that follow them, rather than by early-to-

latewood color contrast.

• Ring-porous hardwoods with rays (HW-RP-R). Same as pre-

vious but with distinct rays.

Finally, there are also non-repetitive features that we term occa-
sional features and which are visible in some cut-outs (see examples

in Figure 5).

• Knots. Darker spots formed where branches once extended.

• Cracks. Splits or fissures that typically occur during drying.

• Insect holes. Small openings caused by boring insects.

• Gum. Resinous deposits that seep from the wood.

• Heart-to-sapwood color transition. Heartwood is the older,

inner core of the tree that is often darker. Sapwood is the outer,

often lighter-colored portion of the tree. We list the heart-to-

sapwood color transition under occasional features because it is

visible only in some cut-outs (those placed at the border).

4 THE MOKUME DATASET
This section introduces the content of our dataset: the characteristics

of the physical samples (Section 4.1) and how they were collected

(Section 4.2) and documented (Section 4.3). For implementation

details, refer to supplementary materials A.1.

4.1 Physical Samples
TheMokume dataset comprises 190 physical wood cubes with a side

length of 4.0 cm, which are diverse in terms of species and trees

(Section 4.1.1), anatomical features (Section 4.1.2), and cut-out poses

(Section 4.1.3).

4.1.1 Species and trees. The samples come from 17 different hard-

and softwood species (Table 1). There are 10 samples per species

except for the softwoods Sugi and Hinoki, both are types of cypress,

for which we included 20 samples because of the frequent presence

of knots, which adds significant variety. To capture diversity within

each species, we collected the samples from different trees, obtaining

1–10 samples from a total of 91 unique trees (Table 1).

4.1.2 Anatomical features. Species from five categories of small-

scale features combinations (see Section 3) are represented in our

dataset (Figure 3-left, Figure 4). Moreover, over a third of the samples

(74 of 190) have at least one occasional feature: insect holes, visible

heart-to-sapwood transitions, cracks, knots, or gum (Figure 3-right,

Figure 5).

4.1.3 Cut-out placements. The appearance of wood changes de-

pending on how the cut is placed. For instance, nearer to the pith

(where the growth starts), the annual rings have a relatively stronger

curvature. The anisotropic nature and three-dimensional structure

of wood cause surface patterns to vary based on the orientation of

the cut. To capture these types of diversities, we varied the cut-out

locations, that is, closer or further from the pith of the tree, and

orientations, that is, straight or angled in relation to the pith (Fig-

ure 6). We estimate the actual cutout locations and orientations by

running our pith inference optimization (refer to Section 5.2) on

the full dataset based on the annotated annual rings. This analysis

reveals many samples are relatively straight and positioned at a
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Table 1. Species in the Mokume dataset. 𝑁𝑆 is the number of cube
samples. 𝑁𝑇 is the number unique trees from which the samples were cut.

Code Name Scientific Name 𝑁𝑆 𝑁𝑇

B Beech Fagus spp. 10 10

BW Black walnut Juglans nigra 10 10

CH Cherry Prunus serotina 10 4

CN Kuri Castanea crenata 10 5

H Hinoki Chamaecyparis obtusa 20 2

IC Icho Ginkgo biloba 10 2

K Keyaki Zelkova serrata 10 10

KR Kurumi Juglans mandshurica 10 4

MP Maple Acer spp. 10 5

MZ Mizume Betula grossa 10 5

N Nara Quercus crispula 10 10

NR Nire Ulmus davidiana 10 7

P Platanus Platanus occidentalis 10 1

RO Red oak Quercus rubra 10 8

S Sakura Prunus spp. 10 4

SG Sugi Cryptomeria Japonica 20 2

TC Tochinoki Aesculus turbinata 10 2

190 91

Fig. 3. Left: Species regular pattern categories. Showing the different
distributions and combinations of pores and rays for the species in the
dataset. Pores are classified according to Murayama and Murayama [2020].
Ray classifications are based on our observations. For category codes, refer
to Section 3. Right: The number of samples with various occasional
features. The counts are based on our observations.

SG-05

a. SW d. HW-RP e. HW-RP-Rc. HW-DP-Rb. HW-DP

KR-02 B-02 CN-02 RO-04

Fig. 4. Samples from species with different regular patterns categories. Note
that the pores of B-02 are small and just barely visible.

5-10 cm from the pith. However, cut-out poses vary significantly

CN-09

a. Insect hole d. Gumc. Knot and crackb. Heart/sap

IC-05 H-05 CH-97

Fig. 5. Samples with various occasional features.

with orientations ranging from 0 to 53 degrees and pith distances

ranging from 1.5 to 33 cm. (Figure 7). Pith distances less than 2.0 cm

indicate that the pith itself is included in the 4.0 cm cube sample, as

the distance is measured from the sample’s center.

SG-09 (d ≈1.6 cm)

a. Includes pith d. Angledc. Straightb. Far from pith

NR-01 (d ≈ 6.7 cm) H-08 (a = 1°) MZ-10 (a = 43°)

Fig. 6. Samples with various cut-out locations (a-b) and orientations (c-d).

Fig. 7. Estimated cut-out locations and orientations. The x-axis indi-
cates the location: the distance between the sample center and its nearest
point on the pith axis. The y-axis indicates the orientation: the angle between
the pith axis and its most closely aligned orthogonal axis.

4.2 Collection and Preparation
Hardware and online stores typically sell unfinished wood cubes

from a few common species (e.g., cypress and oak) with minimal

variation between specimens. Rather, we sourced dry wood directly

from wood mills and cut them into cubes ourselves, enabling a

more diverse sample set. The wood mills visited were those cutting

wood for furniture production and building, thus using relatively

high-grade materials of species likely to be found in interior settings.

We used a table saw to cut the blocks, producing smoother sur-

faces than a band saw. However, some samples, particularly soft-

woods, show visible cut marks from the table saw. We did not sand

or finish the surfaces due to various possible techniques and avail-

able products, which would require a separate extensive study of its

own to cover a sufficient range [Ravindran et al. 2023]. We chose a

cube side length of 4.0 cm, as it is the largest commonly available

thickness, with thicker lumber being rare due to its proneness to

cracking when drying.
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4.3 Documentation
Here, we introduce the modes of documentation of external and

internal information of the wood cubes specimens (Figure 8).

K-04

a. External surfaces b. Annual ring traces c. CT scan d. Cut surface*

Fig. 8. Dataset documentation overview. *Available for 38 of 190 samples.

4.3.1 External photographs. We obtained photographs of the six

sides by scanning them in batches together with a color scale using

a high-resolution (1,200 dpi) office desktop 2D scanner (EPSON

DS-G20000) (Figure 9). Individual photographs were cropped out

from the batch scans, resulting in an image size of approximately

1, 880 px ×1, 880 px. There are six external surfaces per cube and

190 samples, giving a total of 1,140 photographs.

1,880 px 

Close-up

Batch scan

1,
88

0 
px

Fig. 9. External surfaces capturing.

4.3.2 Annual ring annotations. For each photograph, we provide

manually created annotations in the form of numbered traces of the

annual rings. The traces are stored as monochromatic 256
2
image

with integer pixel values representing the year up to an arbitrary

global offset. Inside knots, the annual ring annotations are largely

left blank because they have highly dense annual rings, which are

difficult to annotate in the set resolution. The annotations were

created using a drawing interface with a stylus pen and a touch

screen, and adds up to a total of 420 m.

4.3.3 CT scans. We also scanned wood samples using a special-

ized industrial CT scanner for timber (Microtec Mito) to obtain 3D

volumes (Figure 8c).
1
Although we do not use them in our own

experiments, we include the CT scans to enable future applications

requiring additional 3D ground truth data. Each scan approximately

covers 128
3
voxels of size [.3mm]3.

4.3.4 Photographs of cut surfaces. After dividing the samples of

each species into a training- and testing dataset (refer to Section 5.1),

we physically cut the 38 samples of the test dataset and photographed

the exposed cut surface to create a ground truth reference for com-

parison with inferred textures. There are two types of slanted cuts

(refer to Supplement A.1.4). We did not perform this documentation

on all samples because cutting the samples destroys them, and left

as many specimens intact as possible for future experiments.

1
The Mokume dataset includes CT scans of all samples except 5 (NR-6 to 10) that were

added after the CT scans had been performed.

5 INVERSE MODELING METHOD
Building on the Mokume dataset, we propose an inverse modeling

pipeline (Figure 10) that infers a volumetric color texture from the

external photographs of a wood sample. It comprises three phases:

converting photographs into a 2D annual ring localizations (Sec-

tion 5.1), fitting a volumetric procedural growth field to the extracted

localized annual rings (Section 5.2), and synthesizing detailed vol-

umetric color textures (Section 5.3). Only the first phase uses the

Mokume dataset as training data. For implementation details, refer

to the supplementary materials A.2.

Input

Annual ring
localization

Contours
Procedural growth 
field volume (GF)

Procedural 
texture volume
(Proc) 

NCA texture 
volume (NCA)

a. Annual ring 
localization (Sec. 5.1)

b. Procedural growth 
field fitting (Sec. 5.2)

c. Texture synthesis 
(Sec. 5.3)

Fig. 10. High-level overview of our reconstruction pipeline.

5.1 2D Annual Ring Localization from Photographs
Annual rings are often subtle and obscured by overlapping features

like rays and pores, making their detection in photographs challeng-

ing. In particular, standard edge detection alone is insufficient (see

Section 6.2.3). Therefore, we approach this as an image-to-image

translation problem, converting wood color images into annual

ring localization images, enabling more reliable contour extraction

(Figure 11).

Annual ring
localization

ContoursInput

U-Net, trained on the Mokume dataset

Fig. 11. Overview of the 2D annual ring localization from photographs.

Similar to prior work on annual ring detection [Fabijańska and

Danek 2018], we train a U-Net for its ability to recognize image

features across different scales. Its input consists of 1cm
2
patches

with resolution 64 × 64. The details of the network architecture

and patch-based training follow Texler et al. [2020]. To further

augment the training data and improve generalization to unseen

wood samples of potentially different sizes, we augment the data by

mirroring, scaling, and transforming the color space of the patches.

During inference, we evaluate the network on a sliding window and

reconstruct an image by blending the overlapping areas. Additional

details on these steps can be found in the supplemental material.

5.1.1 Training data. We a 80% of the Mokume dataset for training.
Each training pair consists of an input RGB photo patch and a

monochromatic target patch describing the associated annual ring

structure. To create this target, we interpolate the hand-annotated
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numbered traces (Section 4.3.2) to every pixel to create a fractional

2D growth field 𝑔 value, to which we assign an intensity value using

the following formula:

𝐼 (𝑔) := (cos(2𝜋𝑔)/2 + 1/2)10 . (1)

Raising the result to the 10
th
power sharpens the peaks (annual rings

locations). This transformation is invariant to integer shifts
2
, local-

izes annual rings, and creates smooth oscillatory output (Figure 12).

Section 6.2.3 showcases the benefits of this mapping compared to

other alternatives. Training minimizes the 𝐿1 loss between the target

patches and the U-Net’s output.

d. Cosinec. Growth fieldb. Annotations
4

5
6
7

8

e.  Power 10a. Photograph

Fig. 12. Training data generation. Each training pair consists of a photo
patch and an oscillatory image of the annular ring structure. We create the
latter by interpolating integer-valued traces into a fractional 2D growth
field that we subsequently transform using a cosine and power function.

5.1.2 Contour detection. The final step applies a threshold followed
by a Canny [1986] edge detector. We trim detections at the image

border and connect the remainder into sets of contour curves. This

process creates two contours surrounding each annual ring, which

is not an issue since the next pipeline stage (Section 5.2.2) only

depends on them being iso-curves of the growth field.

5.2 Fitting a 3D Procedural Growth Field
In the next pipeline stage, we extend the 2D annual ring localization

images and their extracted contours into a 3D procedural growth

field. This section introduces the underlying procedural model (Sec-

tion 5.2.1), loss function (Section 5.2.2), and optimization scheme

(Section 5.2.3).

5.2.1 Procedural model. The function𝐺 (𝜔, 𝑝) evaluates the growth
field at a 3D position 𝑝 ∈ R3

. It further depends on parameters

𝜔 = [𝑂,𝑉 , 𝑅], where
• the position and direction 𝑂,𝑉 ∈ R3

specify the pith axis rep-
resenting the start of the tree’s radial growth process. This axis

establishes a cylindrical coordinate system, in which positions 𝑝

can alternatively be expressed in terms of their height ℎ, azimuth

𝜙 , and radius 𝑟 .

• 𝑅 ∈ R𝑛ℎ×𝑛𝑎×𝑛𝑟
characterizes rate of growth resulting from vary-

ing environmental conditions. In particular, the values 𝑅𝑖 𝑗𝑘 dis-

cretize the radial derivative 𝜕/𝜕𝑟 𝐺 of the growth field at𝑛ℎ heights,

𝑛𝑎 azimuths, and 𝑛𝑟 radii.

Figure 13 shows the associated geometry.

Integrating 𝑅𝑖 𝑗𝑘 along the 𝑟 axis starting from the pith yields the

actual value of the growth field at each discretization point. We em-

ploy trilinear interpolation to evaluate the growth field at other po-

sitions and clamp 𝑅𝑖 𝑗𝑘 < 0 when optimizing to prevent inversions.

2
This is important because the year labels of annual ring traces are only known up to a

integer offset.

O
V

Pith axis

Side view Top view

nh heights

na azimuths

nr radii

i
j k

...

... Rijk

Fig. 13. The role of the growth field parameters 𝜔 = [𝑂,𝑉 , 𝑅 ].

5.2.2 Iso-contour loss. The 2D annual ring contours from Section 5.1.2

correspond to iso-contours of the 3D growth field, enabling their use

as effective optimization constraints (Figure 14). Given a contour

𝐶𝑖 (a set of pixels included in a connected component), we define

an iso-contour loss that minimizes the variation of values of𝐺 along

the contour 𝐶𝑖 , by minimizing the difference between each point’s

value to the average value along the contour:

Lic (𝜔,𝐶𝑖 ) :=
1

|𝐶𝑖 |
∑︁
𝑝∈𝐶𝑖

����𝐺 (𝜔, 𝑝′) − 1

|𝐶𝑖 |
∑︁
𝑝′∈𝐶𝑖

𝐺 (𝜔, 𝑝′)
����. (2)

Target contours Lower iso-contour loss

Fig. 14. Iso-contour loss promotes convergence to a 3D growth field, whose
level sets on faces align with a prescribed set of target contours.

5.2.3 Optimization. The recovery of the pith axis and annual ring

distortions occur in sequence (Figure 15).

a. Pith b. Annual ring distortions

Backprop.

Target contours

G(O*, V*, R₀) :

, )L
ic(

Backprop. Boundary BoundaryBoundary

map to M*

Target annual ring 
localization images

, ) + Lim( , )Lic(

G(O, V, R*) :

Fig. 15. Procedural growth field fitting overview. Optimization of a)
the pith axis (�̂� , �̂� ), and b) the radial growth speeds (�̂�) and the gray-map
(�̂�).

Step 1: pith. We first optimize the pith axis (𝑂 and 𝑉 ) of an un-
deformed (i.e., 𝑅𝑖 𝑗𝑘 ≡ 1) growth field to find parameters that best

match the prescribed set of contours C = {𝐶1,𝐶2, ...,𝐶𝑁 }. Specif-
ically, we solve the following optimization using a discontinuous

coarse grid search followed by continuous gradient-based descent:

�̂�,𝑉 = argmin

𝑂,𝑉

𝑁∑︁
𝑖=1

Lic ( [𝑂,𝑉 , 1],𝐶𝑖 ) (3)
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Step 2: distortions. Annual rings can be heavily distorted, which

the previous step fails to consider. Intuitively, we should be able to

reproduce this distortions by optimizing the tree’s spatially varying

growth rate 𝑅 via the loss

L1 (𝑅) :=
𝑁∑︁
𝑖=1

Lic ( [𝑂,𝑉 , 𝑅],𝐶𝑖 ) (4)

While this indeed corrects the iso-contour alignment, does not po-

sition annual rings in an absolute sense. One way to recover their

position would be to apply the oscillatory mapping 𝐼 (Equation 1,

Figure 12) to generate images that can be compared to the U-net’s

output (denoted 𝐼
ref

):

L2 (𝑅) := ∥ 𝐼 (𝐺 ( [𝑂,𝑉 , 𝑅], )) − 𝐼
ref

∥1, (5)

where “ ” indicates simultaneous evaluation on all cube faces.

However, this constrains annual rings to integer values of𝐺 , which

we found to be exceedingly challenging to optimize. For example,

inserting a new annual ring requires a concerted update of all entries

of 𝑅 to preserve the other ring positions at their integer positions. In

practice, we often observe convergence to suboptimal local minima.

Rather, we replace 𝐼 with a piecewise linear function𝑀 : R→R
that assigns a gray value to each growth field value. That parame-

terized function becomes a part of the optimization:

L′
2
(𝑅,𝑀) := ∥𝑀 (𝐺 ( [𝑂,𝑉 , 𝑅], )) − 𝐼

ref
∥1 . (6)

This indirection makes it possible to place annual rings at arbitrary

locations, not limited to integer values of𝐺 . We finally optimize a

linear combination of both losses

𝑅, �̂� = argmin

𝑅,𝑀

𝜆1L1 (𝑅) + 𝜆2L′
2
(𝑅,𝑀)

The annual ring positions are easy to extract as a post-process by

locating global maxima of �̂� . Specifically, we apply a threshold

and extract the location of the centers of each detected area. The

final output comprises the volumetric growth field (𝐺 (�̂�)) and the

iso-curve values (𝐴 ∈ R) of annual rings in the field.

5.2.4 Knots. In the rare case where a sample contains a knot, we

introduce an additional parameter set𝜔𝑘 , detonating the parameters

of the growth field of the knot (as opposed to the pith of the stem),

and a smoothness parameter 𝑠 ∈ R, which controls the shape of

the stem-to-knot union. We use Larsson et al. [2022]’s method that

evaluates a smooth minimum of growth fields around individual

skeleton strands:

𝐺𝑘 (𝜔,𝜔𝑘 , 𝑠, 𝑝) = smooth_min(𝐺 (𝜔, 𝑝),𝐺 (𝜔𝑘 , 𝑝), 𝑠) . (7)

To find the optimal parameters (�̂� , 𝜔𝑘 , 𝑠) of a sample with a knot,

we apply the same optimization framework as before (refer to Sec-

tion 5.2.3) after replacing𝐺 (𝜔) with𝐺𝑘 (𝜔,𝜔𝑘 , 𝑠). Importantly, [𝑂𝑘 ,

𝑉𝑘 ] ∈ 𝜔𝑘 requires a close-to-optimal initialization, which is con-

structed by manually marking the center points of a knot on the

external images. There are typically two center points (the enter and

exit points) because a knot typically penetrates through a sample,

from which we construct the initial knot axis.

5.3 Synthesizing 3D Color Textures
After inferring the 3D procedural growth field, our next goal is to

produce an RGB color volume of the wood texture that matches

the appearance of the real wood as closely as possible, including

details of the texture such as rays and pores. We apply two different

techniques—inference of the parameters of a procedural texture

(Section 5.3.1) and NCA (Section 5.3.2). Both techniques use the

VGG-based style loss proposed by Kolkin et al. [2019].

5.3.1 Approach 1: inverse 3D procedural texturing. We introduce

a function 𝐹 (𝐺 (�̂�), 𝐴, 𝜙) that takes the inferred global structure

(𝐺 (�̂�) and 𝐴) and a set of additional parameters (𝜙) as input, and

produces a color volume. We model the annual rings, fibers, pores,

and rays based on Liu et al. [2016]’s formulation of the wood proce-

dural model, with some simplifications and extensions. In particular,

we simplify by not modeling surface depth nor complex light inter-

actions. Furthermore, we model the fiber direction as parallel to the

pith axis. The extensions include two color-map parameters (size

64 × 3) that control the radial-outward color variations of the early-

and late-wood areas, respectively, facilitating the inverse modeling

of sap-to-hardwood color transitions. For knots, we employ a similar

color map. Overall, 𝜙 includes 436 values (or 639 values with one

knot).

To determine the optimal parameter set
ˆ𝜙 , we initialize annual

ring colors using a continuous optimization and L1 image loss, then

switch to style loss, perform a coarse grid search of fiber, pore, and

ray sizes, followed by a continuous optimization of all parameters

in 𝜙 .

5.3.2 Approach 2: 3D neural cellular automata. To generate finer

details of the wood texture, we first evaluate the growth field on a

𝐻 ×𝑊 × 𝐷 grid of coordinates, giving a growth field tensor G. We

then fit an averagewood color to each growth field value, using a loss

similar to Equation 6, yielding a base color tensor B. Although the

base color approximates the reference, it lacks fine details like pores

and subtle grains. To recover this missing complexity, we adapt the

2D NCA framework from Pajouheshgar et al. [2024a; 2023] to a 3D

volumetric setting and train the NCA to learn a residual to enhance

the base color 𝐵.

Each cell in our 3D grid of size 𝐻 ×𝑊 × 𝐷 maintains a high-

dimensional state S ∈ R𝐻×𝑊 ×𝐷×𝐶
, where the number of channels

𝐶 = 12 in our experiments and the first three channels store the resid-

ual RGB color. As wood’s fine details depend strongly on anatomical

context such as ring structure, we incorporate wood-specific priors

into NCA by concatenating the base color B and growth field G
with the cell state S, thereby forming an augmented state tensor.

In Section 6.4, we show that conditioning the NCA on B and G
strongly boosts synthesis quality; ablations omitting these priors

lead to less realistic growth-ring continuity and color variation in

the volumetric texture.

Each cell then gathers information from its local 3 × 3 × 3 neigh-

borhood by convolving the augmented state tensor with five fixed

3D convolution kernels: identity, three Sobel filters (approximating

spatial gradients ∇x,∇y,∇z), and a 27-point stencil approximation

of the Laplacian operator ∇2
. This yields a (5𝐶 + 10)-dimensional

vector for each cell, which is then concatenated with the cell’s 3D
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coordinates (𝑥,𝑦, 𝑧) to form a (5𝐶 +13)-dimensional input to a multi

layered perceptron (MLP)with two layers, which calculates the resid-

ual cell state update (Figure 16). By unrolling this update rule for

many iterations and applying a VGG-based style loss on the cube’s

visible faces, we train the NCA model parameters via backpropa-

gation through time. We adopt the open-source implementation,

training strategies, and style-loss functions from Pajouheshgar et al.

[2024a].

Depthwise Convolution

𝑮!×#×$×%

𝐒!×#×$×%&

𝑩!×#×$×%

Convolution 
Kernels ∇" ∇# ∇$ ∇%𝟙

𝐻×𝑊×𝐷×(𝐶+2)

Fully Connected
ReLU

Fully Connected

𝐻×𝑊×𝐷×(5𝐶+13)

𝐒!×#×$×%&'(

NCA State

𝑷!×#×$×0

Concat

Fig. 16. Overview of 3D NCA architecture for wood texture synthesis.

6 RESULTS
In this section, we show visual outputs of our method compared

to ground truth (Section 6.1), and present evaluations of individual

components of our pipeline: the structural information extraction

(Section 6.2), the global inference (Section 6.3), and the NCA texture

synthesis (Section 6.4).

6.1 Qualitative Evaluation of Synthesized Textures
Figures 17-18 present visualizations of the growth-field, and the two

texture synthesis methods, comparing performance on a slanted

cut through the 38 test samples. Both models often successfully

reproduce heart-to-sapwood color transitions (e.g., IC-04) and local

color differences (H-14). Furthermore, pore distributions (e.g., CN-

01) and ray orientations (e.g., RO-03) are often well reproduced.

Owing to its flexibility, the NCA reproduces dense and complex ray

patterns for which the procedural model finds a close but not fully

satisfactory approximation within its expressivity (e.g., RO-09). The

NCA model also reproduces a gum inclusion on the cut surface of

MZ-03, though not in the ground truth location, showing its ability

to reproduce irregular features beyond that which is included in

our (or typically in any) procedural wood model. However, the NCA

model does not recognize saw marks as a 2D surface artifact, and

partially reproduces them on the cut surface unrealistically (e.g.,

H-01). When the growth field inference fails, the quality of the

synthesized textures suffers, although the NCA shows a relatively

better capacity to recover (e.g., N-01).

6.2 2D Annual Ring Localization
In this section, we show the species-wise performance of the annual

ring localization image generation (Section 6.2.1) and a generaliza-

tion test (Section 6.2.2). We also evaluate the accuracy of the edges

extracted from the annual ring localization image compared to other

methods (Section 6.2.3).

6.2.1 Performance. The image losses of the annual ring localization

images vary when comparing different species (Figure 19). Moreover,

we observe that the model performs best on the most regular cases

when annual rings are distinct and complex patterns are not present

(e.g., MP-07-B in Figure 20). The model also typically successfully

ignores superimposed visual patterns like sap-to-heart wood borders

(e.g., IC-04-B), cut marks (e.g., H-14-D), and distinct rays and pores

(e.g., N-01-C in Figure 20). Extremely subtle, barely visible annual

rings, however, appear to be more challenging (e.g., S-08-C and

TC-04-B in Figure 20).

6.2.2 Generalization test. We conducted an experiment to evaluate

the ability of the model to generalize to unseen species. The 17

species were randomly divided into five groups of three species

each and one group of two species. For each group, we trained

the network on all samples from the species outside the group

and evaluated its performance on the unseen species within the

group (Figure 21). The median image loss across the six experiments

is 0.20, representing a 13.2% increase compared to our standard

setting, where the network is trained on 80% of the samples from

each species and evaluated on the remaining 20%, which results in

a median image loss of 0.17.

6.2.3 Contour extraction. We evaluate the quality of the contours

extracted from our generated annual ring localization, and compare

it to one ablation and two baselines. The ablation entails omitting the

power of 10 in the annual ring localization image construction (refer

to Section 5.1.1). The two baselines are extracting contours from

1) a thresholded gray-scale wood photograph directly, 2) a wood

photograph after applying a k-means filter (𝑘 = 2) [Lloyd 1982].

The quality of extracted contours are measured by their iso-contour

error against the ground truth continuous growth field (refer to

Figure 12c). Moreover, since the iso-contour error can be minimized

with no contours detected, we additionally report the ratios of the

ground truth contour length and count to confirm that a sufficient

length and amount of contours have been detected, where ground

truth contours are those extracted from the ground truth annual ring

localization image (refer to Figure 12e). Our method outperforms

alternatives, with the ablation showing a 75% higher median average

iso-contour error and the best-performing baseline (1) exhibiting

a 53% higher error (Figure 22). Moreover, the length and count

ratios of the baselines deviate significantly from 1.0, indicating that

extracted contours are either overly few and overly short, or overly

long and overly many.

6.3 3D Procedural Growth Field Fitting
This section presents an ablation study focusing on the optimization

of annual ring distortions (Section 6.3.1). An analogous analysis of

the pith estimation step and growth rate (𝑅) parameter resolution

can be found in supplemental materials B.1 and B.2, respectively.

6.3.1 Optimization step 2: distortions. In global structure inference

step 2, we optimize the distortions of the growth field, which are

adjusted through the control radii (𝑅 ∈ R𝑛ℎ×𝑛𝑎×𝑛𝑟
), and the gray-

map (𝑀) from which the iso-values of the annual rings are extracted

(refer to Section 5.2.3). Possible questions includes, is it important
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B-08
GT GF Proc NCA

B-10
GT GF Proc NCA

BW-02
GT GF Proc NCA

BW-06
GT GF Proc NCA

CH-04
GT GF Proc NCA

CH-06
GT GF Proc NCA

CN-01
GT GF Proc NCA

CN-03
GT GF Proc NCA

H-01
GT GF Proc NCA

H-11
GT GF Proc NCA

H-06
GT GF Proc NCA

H-14
GT GF Proc NCA

IC-04
GT GF Proc NCA

IC-06
GT GF Proc NCA

K-04
GT GF Proc NCA

K-08
GT GF Proc NCA

KR-01
GT GF Proc NCA

KR-07
GT GF Proc NCA

Fig. 17. Qualitative validation (continued on the next page). This matrix covers two samples (columns) from the test subset of each species (rows), showing
a held-out ground truth photograph of the physically cut wood cube (sub-column 1), compared to slanted cuts through the reconstructed growth field
(sub-column 2) and synthesized solid wood textures (sub-column 3, 4). When comparing the outputs, note that, while it is our objective to closely infer the
annual ring locations relative to the reference, we do not expect to reconstruct texture details (pores, rays) with a one-to-one pixel correspondence. Rather,
we effectively model their distributions. See Section 6.1 for further discussion of these results. Videos of rotating cubes for all 38 samples can be found in
Supplement C.
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MP-04
GT GF Proc NCA

MP-07
GT GF Proc NCA

MZ-03
GT GF Proc NCA

MZ-08
GT GF Proc NCA

N-01
GT GF Proc NCA

N-07
GT GF Proc NCA

NR-04
GT GF Proc NCA

NR-10
GT GF Proc NCA

P-06
GT GF Proc NCA

P-10
GT GF Proc NCA

RO-03
GT GF Proc NCA

RO-09
GT GF Proc NCA

S-02
GT GF Proc NCA

S-08
GT GF Proc NCA

SG-03
GT GF Proc NCA

SG-15
GT GF Proc NCA

SG-06
GT GF Proc NCA

SG-16
GT GF Proc NCA

TC-04
GT GF Proc NCA

TC-05
GT GF Proc NCA

Fig. 18. Continuation of Figure 17.
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Fig. 19. Accuracy of annual ring localization image translation. Image
loss of each species of U-Net generated annual ring localization images. The
species are organized by ascending order of loss. The dashed line indicates
the median image loss across all species.
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Fig. 20. Visual output from the annual ring localization image trans-
lation. Top: color image of the wood (input). Middle: ground truth annual
ring localization images created from manual annotations (target). Bottom:
U-Net generated annual ring localization images (output).

Fig. 21. Generalization test of annual ring localization image transla-
tion. Box 1 ("None") represents the results when the network is trained on
80% of all species and evaluated on the remaining 20%. Boxes 2–7 ("B, KR,
IC," and so on) show the results when the network is trained on 100% of the
samples of all species except a specific group of 2–3 species and evaluated
on the unseen species in that group. The dashed line indicates the median
loss of box 1.

that 𝑅 represents the growth speed at a point rather than the ex-

plicit growth value, and the iso-contour loss necessary? We ran

ablation experiments to answer these questions. Specifically, we

compare our method to two ablations: 1) with an alternative explicit

construction of 𝑅, 2) without iso-contour loss (just the image loss

between target and output annual ring localization images drives

Fig. 22. Quality of extracted contours. Comparison between our method,
an ablation, and two baselines. Each box shows the distribution of the
average errors and ratios for the 228 images (6 × 38) in our test set. Lower
iso-contour error indicates that the contours better follow the zero-gradient
of the ground truth growth field. The dashed black line shows the median
average iso-contour error of the proposed method (0.006). The dashed gray
line indicates the ideal ratio (1.0) of contour lengths and counts.

the optimization). We evaluate the results against the ground truth

annual ring annotations by two metrics. First, if the annual ring lo-

calization is correct, the color values of the annotated pixels should

be white, and therefore, we report the average pixel colors at the an-

notation pixel locations. Second, we measure the iso-contour error

of the ground truth annotated annual ring edges in the underlying

growth-field from which the annual ring localization is constructed.

This measures how well the annual ring pattern in the procedurally

generated annual ring localization images follow the ground truth

shapes.

Our method creates outputs with a lower median iso-contour

errors, while median color values are similar for all methods (Fig-

ure 23). This is confirmed by the visual outputs, where we observe

that estimated annual rings in the ablations frequently “jump” be-

tween different GT annual rings, that is, not following their shape

although hitting many peaks (Figure 24). In ablation 1 (explicit con-

struction of R) there are visual artifacts caused by this construction

not inherently guaranteeing that an inner radius is smaller than an

outer radius. This shows up as annual rings crossing each other,

which is anatomically infeasible in wood growth where layers of

annual material growth are subsequently added in the outward

direction.

Fig. 23. Ablations of annual ring distortions and locations optimiza-
tion. Each box shows the distribution of losses for the 38 samples in the test
dataset. A better estimated annual ring localization image is characterized
by a lower iso-contour error (ideally 0.0), and a higher gray value (ideally
1.0, white).
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Target Ours Ablation 1 Ablation 2 

SG-16

Fig. 24. Visual outputs from the ablation study of the annual ring
distortions and location optimization. The optimization target are the
external annual ring localization images generated by the U-Net (along with
the contours extracted from it). In the ablations, annual rings tend to jump
up or down between different GT annual rings.

6.4 Ablation of NCA
NCAs generally excel at synthesizing repetitive patterns or textures

without strong global structures. Pajouheshgar et al. [2023] showed

that positional encodings can help capture some long-range correla-

tions of the target texture. However, by ablating the wood-specific

conditioning and omitting B and G from the NCA architecture, we

showed that positional encoding alone is insufficient for producing

coherent solid wood texture. Without our wood-specific priors, the

annual rings become discontinuous (e.g., CN-01), the rays form in an

incorrect direction (e.g., B-08), and the knots fail to form properly in

the synthesized textures (e.g., H-11, Figure 25). This highlights that

while positional encoding can help NCAs to model some aspects of

a global structure, they cannot substitute our global wood structure

priors.

CN-01
NCA

NCA-
abl. GT

B-08
NCA

NCA-
abl. GT

H-11
NCA

NCA-
abl. GT

Fig. 25. NCA ablation comparison.Omitting the priors of the global wood
structure leads to discontinuous annual rings (CN-01), incorrect orientation
of rays (B-08), and indistinct knot structure (H-11).

7 LIMITATIONS
We have not yet captured samples in the Mokume dataset under
varying lighting conditions, the dataset is limited to one sample

size ([4.0 cm]3), and, although we included samples from many (17)

species, this list is not exhaustive.

We approximate the pith as a straight line, and our parametriza-

tion of annual ring distortions is based on the assumptions that

annual rings are star-shaped relative to the closest point the pith

axis (or the knot axis). While a more complex formulation of the pith

and distortions is unnecessary for our target samples, it could prove

beneficial for handling highly distorted wood instances. While a

more complex formulation of the pith and the distortions would

be unlikely to yield better results for our target samples, it could

prove beneficial for extremely distorted wood instances. Moreover,

we model only alive knots (not dead or broken off ones), do not

apply growth distortions to the knots, and approximate their central

skeleton as a straight line.

As for texture synthesis, our procedural texturing model is a

simplification of the state-of-the-art ([Liu et al. 2016] (refer to Sec-

tion 5.3.1). The main limitation of the NCA is that a single state

tensor (256 × 256 × 256 × 12) requires 384 MiB of storage in float16

precision. Backpropagating derivatives through a sequence of NCA

updates requires intermediate states to be held in memory, which

can saturate the memory of even the largest GPUs on the market.

8 CONCLUSION
The Mokume dataset provides a comprehensive new resource for

wood structure modeling, offering exceptional diversity by cov-

ering various species with high-resolution multimodal data. We

demonstrate how the combination of this dataset with computa-

tional models has powerful predictive capabilities, evidenced by

high-fidelity synthetic wood textures that closely align with unseen

ground truth data.

Central to our approach is the use of annual ring patterns as a

deterministic feature, while fine-scale details (rays, pores, etc.) are

treated as a learnable stochastic distribution. A compelling avenue

for future research could involve extrapolating beyond the sample’s

boundaries. This would necessitate a modified methodology focused

on capturing the overall "style" of distortions rather than achieving

an exact match.

The potential applications of inverse procedural modeling are

numerous and span diverse fields. Examples include predicting the

visual outcome of sculptural pieces before physical carving, synthe-

sizing extensive libraries of realistic materials for digital rendering,

or the inference of non-visual properties: since the global structure

of wood determines its mechanical properties, we envision the use

of growth fields to augment simulations of material deformation and

strength, using the resulting insights to guide irreversible processes

such as milling and cutting.

Another potential research area is the directional reflectance

behavior caused by the anisotropic nature of wood fibers. While pre-

vious research required complex gonio-photometric measurements

to infer their properties, we hypothesize that such effects could also

be retrofitted to our work, as the fiber direction is inherently tied to

the growth field.

Besides serving as a benchmark for procedural and learning-

based texture synthesis, we hope that the release of the Mokume
will catalyze interdisciplinary research to to explore the manifold

properties of wood.
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