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Fig. 1. a. Overview of the diverse wood species covered by theMokume dataset. b. This data is used for training and evaluation of an inverse modeling pipeline
for solid wood textures. Our method first evaluates a neural model that converts the exterior photographs into 2D annotations of the annual ring pattern. We
then compute a compatible procedural growth field (GF) that assigns a time to every 3D position, denoting when the associated material was added during the
tree’s growth. The annual-rings are iso-curves/surfaces of this growth field. We showcase two ways to transform this representation into a detailed 3D texture:
an efficient inverse procedural model (Proc) with support for point-wise evaluation, and a versatile but resource-intensive neural cellular automaton (NCA).

We present the Mokume dataset for solid wood texturing consisting of 190

cube-shaped samples of various hard and softwood species documented by
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high-resolution exterior photographs, annual ring annotations, and volumet-

ric computed tomography (CT) scans. A subset of samples further includes

photographs along slanted cuts through the cube for validation purposes.

Using this dataset, we propose a three-stage inverse modeling pipeline

to infer solid wood textures using only exterior photographs. Our method

begins by evaluating a neural model to localize year rings on the cube face

photographs. We then extend these exterior 2D observations into a globally

consistent 3D representation by optimizing a procedural growth field using

a novel iso-contour loss. Finally, we synthesize a detailed volumetric color

texture from the growth field. For this last step, we propose two methods

with different efficiency and quality characteristics: a fast inverse procedural

texture method, and a neural cellular automaton (NCA). We demonstrate the

synergy between the Mokume dataset and the proposed algorithms through

comprehensive comparisons with unseen captured data. We also present

experiments demonstrating the efficiency of our pipeline’s components

against ablations and baselines. Our code, the dataset, and reconstructions

are available via https://mokumeproject.github.io/.

CCS Concepts: • Computing methodologies→ Volumetric models.

Additional Key Words and Phrases: procedural texturing, neural cellular

automaton
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1 INTRODUCTION
Wood is an ubiquitous material in real and virtual environments.

Natural wood surfaces exhibit mesmerizing textural detail and color

variation that impart a sense of warmth and comfort to humans. In

this work, we seek to characterize the space of textures originating

from the abundance of tree species and the complex relationship

between appearance and the angle and position of cuts in wood.

Previous wood datasets imaged localized 2D regions for species

identification and tree-ring dating [De Blaere et al. 2023; Fabijańska

et al. 2017]. In contrast, the ability to map wood texture onto objects

without causing distortions depends on 3D solid wood represen-

tations that assign an albedo value to positions in space. Compre-

hensive datasets of this nature are not available, hence prior wood

texturing methods have relied on few examples, often unique to

each study [Larsson et al. 2022; Liu et al. 2016; Marschner et al. 2005].

We present the Mokume dataset to provide this critical ingredient.

Mokume, named after the Japanese word for wood grain, com-

prises 190 physical cube samples with a side length of 4.0 cm. The

samples were taken from 17 different hard- and softwood species,

and exhibit diverse anatomical patterns, imperfections, and cut-

out placements. Each sample is documented by external surface

photographs with annotations of the annual rings, and volumetric

computed tomography (CT) scans. A subset of 38 samples were

cut to photograph an internal surface for validation purposes. The

Mokume dataset can support data-driven approaches and enables

comprehensive evaluations and robust method comparisons.

Building on this new dataset, we further propose and evaluate

an inverse modeling pipeline that infers solid wood textures based

on exterior photographs. We address this challenge in three stages:

the first localizes 2D annual rings in each input photograph. The

resulting information is used in the second step to construct a con-

tinuous procedural growth field (GF) that maps 3D positions to a

scalar value representing the time when the associated material

was added during the tree’s growth process. This field roughly en-

codes the distance from the tree’s centerline (“pith”) and further

accounts for distortions due to uneven growth. The annual rings

are iso-surfaces of this field. The final step uses the growth field to

synthesize solid wood textures.

Unlike previous methods for inverse wood texturing that make

assumptions about the location of the pith axis [Lefebvre and Poulin

2000; Nindel et al. 2023], or require manually traced numbered an-

nual rings as inputs [Larsson et al. 2024], our method can directly

and robustly infer the growth field from external photographs and

annotations of knot centers (if present). We trained a U-Net on a por-

tion of theMokume dataset to extract annual rings from the external

photographs, to which we fit a volumetric procedural growth field.

In addition, unlike forward procedural wood textures that use noise

to create distortions [Liu et al. 2016], our model is parameterized by

the tree’s varying radial growth speed, giving sufficient control to

enable fitting the model to reference data. Moreover, we propose a

differentiable iso-contour loss that measures the deviation of growth

field values along extracted target annual rings, which is effective

for inferring the pith axis and field distortions.

With the growth field at hand, we showcase two approaches to

synthesize a detailed solid wood texture: an extended procedural

model that further accounts for detailed features such as pores and

rays, and a neural cellular automaton (NCA) that learns an update

rule to iteratively create the desired structure [Mordvintsev et al.

2020]. We optimize both models using style-based losses to produce

detailed and realistic textures. The two models occupy opposite

quadrants of the quality/efficiency design space and serve to demon-

strate the varied applications of theMokume dataset: the procedural
model is memory-efficient, editable, and requires a single pass, while

the NCA is highly parameter-efficient and can reproduce fine details

if significant computation and memory usage are acceptable.

We present qualitative results by reconstructing solid wood tex-

tures for each of the 38 samples in our test portion of the dataset,

comparing the inferred texture of both models to the slanted cuts

through the physical cubes. We further evaluate specific compo-

nents of our framework in a series of quantitative experiments and

ablations.

2 RELATED WORK
This section discusses prior work on datasets (Section 2.1), texturing

(Section 2.2), and wood modeling and analysis (Section 2.3).

2.1 Datasets
2.1.1 Material appearance. Most prior appearance datasets were

curated to support (SV-)BRDF reconstruction of diverse material

types such as leather and cloth [Aittala et al. 2015; Henzler et al.

2021; Nielsen et al. 2015]. Marschner et al. [2005] fit a specialized

wood SVBRDF to a dataset comprising five samples. In contrast,

our study focuses on volumetric structure and color, leaving 5D

spatio-directional reflectance modeling for future work.

2.1.2 Wood analysis. Existing wood datasets cater to applications

such as species identification, abnormality detection, and dendroch-

ronological measurement (tree-ring dating). Datasets for species

identification typically include classified optical scans of small patches

of end-grain surfaces [De Blaere et al. 2023], tree bark [Warner et al.

2024], or CT scans [Kobayashi et al. 2019]. Another dataset was

developed to analyze the effect of surface preparation (the grit of

sand paper and type of saw) [Ravindran et al. 2023]. Datasets for

abnormality detection are typically made up of labeled images of

different surface defects of solid wood or veneer, such as knots and

cracks [Kodytek et al. 2022; Shi et al. 2020b]. Finally, dendrochrono-

logical datasets provide strip images in the outward direction from

the pith on cross-section of a stem, often including annual ring

annotations [Fabijańska et al. 2017; Wu et al. 2023].

Unlike existing datasets, we provide comprehensive cross-sectional

coverage, capturing all sides of samples taken in various orientations

relative to the pith.

2.2 Texture Modeling
2.2.1 Procedural texturing. Procedural texturing, first introduced
by Peachey [1985] and Perlin [1985], involves generating a mate-

rial texture through an algorithmic process rather than referring to
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explicitly stored data. This approach yields a compact and editable

representation capable of producing variations at a low compu-

tational cost, and remains a widely used technique. Given these

advantages, procedural texturing is particularly suitable for solid

textures that exhibit high natural variation, such as wood. The func-

tions for generating various wood features are well understood,

owing to Liu et al. [2016], who proposed a comprehensive set of

forward functions for generating pores, rays, and light reflections

from fiber directions, while Larsson et al. [2022] proposed a function

for knots. In this paper, we target the inverse problem.

2.2.2 Inverse modeling. Inverse modeling aims to automatically

discover optimal parameters so that a generated output matches a

given target. In computer graphics, this technique has been widely

explored; for example, in inverse differentiable rendering [Kato et al.

2020; Li et al. 2018], material or scene parameters are optimized

through gradients of the rendering function, enabling tasks such

as volumetric material capturing [Gkioulekas et al. 2013], caustic

design [Nimier-David et al. 2019], color reproduction [Nindel et al.

2021], and geometric optimization [Liu et al. 2018; Nicolet et al.

2021].

Node-graph representations of procedural shaders, have advanced

significantly, evolving from classification or regression for predict-

ing node graph parameters [Hu et al. 2019], later extended to differ-

entiable or semi-differentiable pipelines for material learning [Hu

et al. 2022a,b; Li et al. 2023; Shi et al. 2020a], and reinforcement

learning for parameter prediction [Li et al. 2024]. Beyond parameter

fitting, other systems enable the generation of node graphs [Guer-

rero et al. 2022; Li et al. 2025] and prompt-guided graphs searches

[Hu et al. 2023], achieving near-photorealistic reproduction of di-

verse materials.

2.2.3 Solid texture synthesis. Creating a solid texture from a 2D

reference image is a classical problem [Kopf et al. 2007; Kwatra

et al. 2005]. Recent work has extended solid texturing approaches to

support inverse modeling through gradient-based learning. Henzler

et al. [2020] train a coordinate-to-color mapping MLP by feeding

multi-frequency noise as input, and Portenier et al.[2020] inject

noise into hidden layers for richer outputs. Likewise, Gutierrez et al.

[2020] use a 3D CNN that transforms random noise into volumet-

ric textures. However, while these methods focus on synthesizing

visually plausible 3D textures from a 2D reference, they do not

incorporate wood-specific growth patterns or aim for a faithful vol-

umetric reconstruction. In contrast, our approach leverages wood

anatomical priors, such as the pith axis and annual ring distortions,

to recover the interior of a real wood sample from its external faces.

2.2.4 Neural cellular automata. Neural cellular automata (NCA),

proposed by Mordvintsev et al. [2020], are inspired by reaction-

diffusion (RD) systems and classical cellular automata (CA), adapting

their local update principle while substituting the traditional hand-

crafted rule with a small neural network. The model is unrolled for

multiple iterations, and trained end-to-end using backpropagation

through time and a style-based loss to synthesize a reference texture.

This paradigm is effective for producing self-organizing textures

[Niklasson et al. 2021] and has been extended for generating dy-

namic textures [Pajouheshgar et al. 2023] or texturing 3D meshes

directly [Pajouheshgar et al. 2024b], showcasing the flexibility of

NCAs in producing complex patterns from simple local rules. This

study demonstrates that a natural extension of NCAs to the 3D volu-

metric setting, combined with our proposed wood-specific priors, is

a highly effective model for synthesizing realistic and faithful solid

wood textures.

2.3 Wood Modeling and Analysis
2.3.1 Inverse modeling. Some previous studies tackle the backward

procedural wood texturing problem specifically, and show a few

successful outputs [Guo et al. 2020; Lefebvre and Poulin 2000; Nin-

del et al. 2023]. However, none of these handles knots or texture

details (pores, rays). Moreover, Nindel et al. [2023] and Lefebvre

and Poulin [2000] make strict assumptions about the pith axis loca-

tion, determining its location analytically by identifying the largest

orthogonal distance between annual rings, which holds only for a

subset of cutout poses. Finally, Nindel et al. [2023] extracts contours

as a first step, using curved Gabor filters, which, while not requiring

training data, is dependent on the image gradients and therefore not

robust against features superimposed over the annual rings, such

as rays.

Larsson et al. [2024] proposed a learning-based method for in-

ferring a (non-procedural) volumetric texture based on external

surface information. Although the problem setup is analogous to

ours, there are key technical differences. First, while they require

manually tracing numbered contours on the input photographs,

we circumvent this requirement by automatic extraction of con-

tours. Second, for global structure inference, they train a model

on procedurally generated data (without knots), and optimize the

parameters of the trained model, creating a neural growth field. In

contrast, we optimize the parameters of a procedural growth field

directly, owing to our proposed iso-contour loss. Third, for colored

volume synthesis, they independently apply 2D style-transfer on

each volume slice, which does not guarantee 3D consistency. Our

texture synthesis approaches (procedural texturing and NCA) are

fully volumetric/3D.

2.3.2 Growth field. A growth field representation of wood material

analogous to ours was used in previous works, modeled procedurally

[Larsson et al. 2022], using a neural model [Larsson et al. 2024], or

by evolution over numerous time-steps [Kratt et al. 2015; Mann et al.

2006; Sellier et al. 2011].

2.3.3 Pith detection. Pith detection is a fundamental task in wood

engineering, essential for modeling wood growth patterns to evalu-

ate mechanical properties and optimize material usage. This typi-

cally involves estimating the pith point in a 2D image captured in a

plane roughly perpendicular to the pith axis, whether a photograph

of the end of a log [Kurdthongmee and Suwannarat 2019; Norell and

Borgefors 2008; Schraml and Uhl 2013] or a CT image of a radial

cross-section [Boukadida et al. 2012; Gazo et al. 2020; Longuetaud

et al. 2004]. In contrast, we estimate the 3D axis of the pith based,

and do so based on images of external surfaces facing in various

directions.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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3 WOOD ANATOMY AND TERMINOLOGY
This section presents key terminology to explain and classify key

features of wood textures (Figure 2). The most basic wood material

geometries and features are as follows:

• Pith is the innermost center skeleton of a tree.

• Annual rings are formed by alternating layers of early- and

latewood. Earlywood, which grows in spring, appears lighter,

while latewood, which forms later in the year, appears darker.

This alteration creates a pattern of concentric circles in the radial

views and parallel bands in the tangential plane.

• Pores, also known as vessels, are tube-like structures extending

vertically. Pores appear as tiny circular openings in radial view,

and elongated openings in the tangential plane.

• Rays are thin, ribbon-like structures extending radially from the

wood’s pith. Rays are visible as fine lines in a radial view and

patch-like dots in the tangential plane.

We identify five categories of wood based on the visibility and

arrangement of small-scale features (see examples in Figure 4). The

abbreviations used below are as follows: SW for softwood, HW for

hardwood, DP for diffuse-porous, RP for ring-porous, and R for rays:

• Softwoods (SW). The annual rings are typically distinct from the

early- and late-wood color contrast, while both pores and rays

are indistinct.

• Diffuse-porous hardwoods (HW-DP). Pores are distributed
relatively evenly while the annual rings are distinct from the

early-to-late-wood color contrast like in softwood.

• Diffuse-porous hardwoods with rays (HW-DP-R). Same as

previous but with distinct rays.

• Ring-porous hardwoods (HW-RP). The annual rings are dis-
tinct from the pores that follow them, rather than by early-to-

latewood color contrast.

• Ring-porous hardwoods with rays (HW-RP-R). Same as pre-

vious but with distinct rays.

Finally, there are non-repetitive features that we term occasional
features, and which are visible in some cut-outs (refer to Figure 5).

Diffuse-porous 
hardwood

Diffuse-porous hardwood 
with rays

Ring-porous 
hardwood

Ring-porous 
hardwood with 

rays

Rays

Softwood
(SW)

Pores

Knot

Annual ring

Pith

Earlywood
Latewood

Sapwood

Heartwood

Fig. 2. Terminology of wood features.

• Knots. Darker spots formed where branches once extended.

• Cracks. Splits or fissures that typically occur during drying.

• Insect holes. Small openings caused by boring insects.

• Gum. Resinous deposits that seep from the wood.

• Heart-to-sapwood color transition. Heartwood is the older,

inner core of the tree that is often darker. Sapwood is the outer,

often lighter-colored portion of the tree. We list the heart-to-

sapwood color transition under occasional features because it is

visible only in some cut-outs (those placed at the border).

4 THE MOKUME DATASET
This section introduces the content of our dataset: the characteristics

of the physical samples (Section 4.1) and how they were collected

(Section 4.2) and documented (Section 4.3). For implementation

details, refer to Appendix A.1.

4.1 Physical Samples
TheMokume dataset comprises 190 physical wood cubes with a side

length of 4.0 cm, which are diverse in terms of species and trees,

anatomical features, and cut-out poses.

4.1.1 Species and trees. The samples come from 17 different hard-

and softwood species (Table 1). There are 10 samples per species

except for the softwoods Sugi and Hinoki, both types of cypress, for

which we included 20 samples because of the frequent presence of

knots, which adds significant variety. To capture diversity within

each species, we collected the samples from different trees, obtaining

1–10 samples from a total of 91 unique trees (Table 1).

4.1.2 Anatomical features. Species from five categories of small-

scale features combinations (see Section 3) are represented in our

dataset (Figure 3-left, Figure 4). Over a third of the samples (74

of 190) have at least one occasional feature: insect holes, visible

Table 1. Species in the Mokume dataset. 𝑁𝑆 is the number of cube
samples. 𝑁𝑇 is the number unique trees from which the samples were cut.

Code Name Scientific Name 𝑁𝑆 𝑁𝑇

B Beech Fagus spp. 10 10

BW Black walnut Juglans nigra 10 10

CH Cherry Prunus serotina 10 4

CN Kuri Castanea crenata 10 5

H Hinoki Chamaecyparis obtusa 20 2

IC Icho Ginkgo biloba 10 2

K Keyaki Zelkova serrata 10 10

KR Kurumi Juglans mandshurica 10 4

MP Maple Acer spp. 10 5

MZ Mizume Betula grossa 10 5

N Nara Quercus crispula 10 10

NR Nire Ulmus davidiana 10 7

P Platanus Platanus occidentalis 10 1

RO Red oak Quercus rubra 10 8

S Sakura Prunus spp. 10 4

SG Sugi Cryptomeria Japonica 20 2

TC Tochinoki Aesculus turbinata 10 2

190 91

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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heart-to-sapwood transitions, cracks, knots, or gum (Figure 3-right,

Figure 5).

Fig. 3. Left: regular pattern categories of each species in the dataset. Pores
are classified according to Murayama and Murayama [2020]. Ray classifica-
tions are based on our observations. For category codes, refer to Section 3.
Right: occasional feature counts based on our observations.

SG-05

a. SW d. HW-RP e. HW-RP-Rc. HW-DP-Rb. HW-DP

KR-02 B-02 CN-02 RO-04

Fig. 4. Examples of regular pattern categories. Note that the pores of B-02
are small and just barely visible.

CN-09

a. Insect hole d. Gumc. Knot and crackb. Heart/sap

IC-05 H-05 CH-97

Fig. 5. Examples of occasional features.

4.1.3 Cut-out placements. The anisotropic nature and 3D structure

of wood cause surface patterns to vary based on the cut-out location

and orientation in relation to the tree. For instance, nearer to the pith

(where the growth starts), the annual rings have stronger curvatures.

To capture these types of diversities, we varied the cut-out loca-
tions, that is, closer or further from the pith of the tree, and orienta-
tions, that is, straight or angled in relation to the pith (Figure 6). We

estimate the actual cutout locations and orientations by running

our pith inference optimization (refer to Section 5.2) on the full

dataset based on the annotated annual rings. This analysis reveals

many samples are relatively straight and positioned at a 5-10 cm

distance from the pith. However, cut-out poses vary significantly

with orientations ranging from 0 to 53 degrees and pith distances

ranging from 1.5 to 33 cm. (Figure 7). Pith distances less than 2.0 cm

indicate that the pith itself is included in the 4.0 cm cube sample, as

the distance is measured from the sample’s center.

SG-09 (d ≈1.6 cm)

a. Includes pith d. Angledc. Straightb. Far from pith

NR-01 (d ≈ 6.7 cm) H-08 (a = 1°) MZ-10 (a = 43°)

Fig. 6. Examples of cut-out locations (a-b) and orientations (c-d).

Fig. 7. Estimated cut-out locations and orientations. The x-axis indicates
the location: the distance between the sample center and its nearest point
on the pith axis. The y-axis indicates the orientation: the angle between the
pith axis and its most closely aligned orthogonal axis.

4.2 Collection and Preparation
Hardware and online stores typically sell unfinished wood cubes

from a few common species (e.g., cypress and oak) with small varia-

tion between specimens. Therefore, we sourced dry wood directly

from wood mills and cut them into cubes ourselves, enabling a di-

verse sample set. The woodmills visited were those cutting wood for

furniture production and building, thus using relatively high-grade

materials of species likely to be found in interior settings.

We used a table saw to cut the blocks, producing smoother sur-

faces than a band saw. However, some samples, particularly soft-

woods, show visible cut marks from the table saw. We did not sand

or finish the surfaces due to various possible techniques and avail-

able products, which would require a separate extensive study of its

own to cover a sufficient range [Ravindran et al. 2023]. We chose a

cube side length of 4.0 cm, as it is the largest commonly available

thickness, with thicker lumber being rare due to its proneness to

cracking when drying.

4.3 Documentation
Here, we introduce the modes of documentation of external and

internal information of the wood cubes (Figure 8).

4.3.1 External photographs. We obtained photographs of the six

sides by scanning them in batches together with a color scale using

a high-resolution (1,200 dpi) office desktop 2D scanner (EPSON

DS-G20000) (Figure 9). Individual photographs were cropped out

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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K-04

a. External surfaces b. Annual ring traces c. CT scan* d. Cut surface**

Fig. 8. Dataset documentation overview (available for *185/190 and **38/190
samples, respectively).

from the batch scans, resulting in an image size of approximately

1, 880 px ×1, 880 px. There are six external surfaces per cube and

190 samples, giving a total of 1,140 photographs.

K-04-A

1,880 px 

Close-up

Batch scan

1,
88

0 
px

Fig. 9. External surfaces capturing.

4.3.2 Annual ring annotations. For each photograph, we provide

manually created annotations in the form of numbered traces of the

annual rings. The traces are stored as monochromatic 256
2
image

with integer pixel values representing the year up to an arbitrary

global offset. Inside knots, the annual ring annotations are largely

left blank because they have highly dense annual rings, which are

difficult to annotate in the set resolution. The annotations were

created using a drawing interface with a stylus pen and a touch

screen, and adds up to a total of 420 m.

4.3.3 CT scans. We scanned wood samples using an industrial

CT scanner for timber (Microtec Mito) to obtain 3D volumes (Fig-

ure 8c).
1
Although we do not use them in our own experiments,

we include the CT scans to enable future applications requiring

additional 3D ground truth data. Each scan approximately covers

128
3
voxels of size [.3mm]3.

4.3.4 Photographs of cut surfaces. After dividing the samples of

each species into a training- and testing portion (refer to Section 5.1),

we physically cut the 38 test samples and photographed the ex-

posed cut surfaces to create ground truth references for comparison

with inferred textures. There are two types of slanted cuts (refer

to Supplement A.1.4). We did not perform this documentation on

all samples because cutting the samples destroys them, keeping as

many specimens as possible intact for future experiments.

5 INVERSE MODELING METHOD
Building on the Mokume dataset, we propose an inverse modeling

pipeline that infers a volumetric color texture from the external pho-

tographs of a wood sample (Figure 10). It comprises three phases:

converting photographs into a 2D annual ring localizations (Sec-

tion 5.1), fitting a volumetric procedural growth field to the extracted

localized annual rings (Section 5.2), and synthesizing detailed vol-

umetric color textures (Section 5.3). Only the first phase uses the

1
The Mokume dataset includes CT scans of all samples except 5 (NR-6 to 10) that were

added after the CT scans had been performed.

Mokume dataset as training data. For implementation details, refer

to Appendix A.2.

Input

Annual ring
localization

Contours
Procedural growth 
field volume (GF)

Procedural 
texture volume
(Proc) 

NCA texture 
volume (NCA)

a. Annual ring 
localization (Sec. 5.1)

b. Procedural growth 
field fitting (Sec. 5.2)

c. Texture synthesis 
(Sec. 5.3)

Fig. 10. High-level overview of our reconstruction pipeline.

5.1 2D Annual Ring Localization from Photographs
Annual rings are often subtle and obscured by overlapping features

like rays and pores, making their detection in photographs challeng-

ing. Standard edge detection alone is insufficient (see Section 6.3.3).

Therefore, we approach this as an image-to-image translation prob-

lem, converting wood color images into annual ring localization

images, enabling reliable contour extraction (Figure 11).

Annual ring
localization

ContoursInput

U-Net, trained on the Mokume dataset

Fig. 11. Overview of the 2D annual ring localization from photographs.

Similar to prior work on annual ring detection [Fabijańska and

Danek 2018], we train a U-Net for its ability to recognize image

features across different scales. Its input consists of 1cm
2
patches

with resolution 64 × 64. The details of the network architecture

and patch-based training follow Texler et al. [2020]. To further

augment the training data and improve generalization to unseen

wood samples of potentially different sizes, we augment the data by

mirroring, scaling, and transforming the color space of the patches.

During inference, we evaluate the network on a sliding window and

reconstruct an image by blending the overlapping areas. Additional

details on these steps can be found in Appendix A.2.1.

5.1.1 Training data. We used 80% of the Mokume dataset for train-
ing. Each training pair consists of an input RGB photo patch and a

monochromatic target patch describing the associated annual ring

structure. To create this target, we interpolate the hand-annotated

numbered traces (Section 4.3.2) to every pixel to create a fractional

2D growth field 𝑔 value, to which we assign an intensity value using

the following formula:

𝐼 (𝑔) := (cos(2𝜋𝑔)/2 + 1/2)10 . (1)

Raising the result to the 10
th
power sharpens the peaks (annual rings

locations). This transformation is invariant to integer shifts
2
, local-

izes annual rings, and creates smooth oscillatory output (Figure 12).

2
This is important because the year labels of annual ring traces are only known up to a

integer offset.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Section 6.3.3 showcases the benefits of this mapping compared to

other alternatives. Training minimizes the 𝐿1 loss between the target

patches and the U-Net’s output.

d. Cosinec. Growth fieldb. Annotations
4

5
6
7

8

e.  Power 10a. Photograph

Fig. 12. Training data construction. Each training pair consists of a photo
patch and an oscillatory image of the annular ring structure. We create the
latter by interpolating integer-valued traces into a fractional 2D growth
field that we subsequently transform using a cosine and power function.

5.1.2 Contour detection. The final step applies a threshold followed
by a Canny [1986] edge detector. We trim detections at the image

border and connect the remainder into sets of contour curves. This

process creates two contours surrounding each annual ring, which

is not an issue since the next pipeline stage (Section 5.2.2) only

depends on them being iso-curves of the growth field.

5.2 Fitting a 3D Procedural Growth Field
In the next pipeline stage, we extend the 2D annual ring localization

images and their extracted contours into a 3D procedural growth

field. This section introduces the underlying procedural model (Sec-

tion 5.2.1), loss function (Section 5.2.2), and optimization scheme

(Section 5.2.3).

5.2.1 Procedural model. The function𝐺 (𝜔, 𝑝) evaluates the growth
field at a 3D position 𝑝 ∈ R3

. It further depends on parameters

𝜔 = [𝑂,𝑉 , 𝑅] (Figure 13), where
• the position and direction 𝑂,𝑉 ∈ R3

specify the pith axis rep-
resenting the start of the tree’s radial growth process. This axis

establishes a cylindrical coordinate system, in which positions 𝑝

can alternatively be expressed in terms of their height ℎ, azimuth

𝜙 , and radius 𝑟 .

• 𝑅 ∈ R𝑛ℎ×𝑛𝑎×𝑛𝑟
characterizes rate of growth resulting from vary-

ing environmental conditions. In particular, the values 𝑅𝑖 𝑗𝑘 dis-

cretize the radial derivative 𝜕/𝜕𝑟 𝐺 of the growth field at𝑛ℎ heights,

𝑛𝑎 azimuths, and 𝑛𝑟 radii.

O
V

Pith axis

Side view Top view

nh heights

na azimuths

nr radii

i
j k

...

... Rijk

Fig. 13. Associated geometry of the growth field parameters𝜔 = [𝑂,𝑉 , 𝑅 ].

Integrating 𝑅𝑖 𝑗𝑘 along the 𝑟 axis starting from the pith yields

the actual value of the growth field at each discretization point.

We employ trilinear interpolation to evaluate the growth field at

other positions and clamp 𝑅𝑖 𝑗𝑘 < 0 when optimizing to prevent

inversions.

5.2.2 Iso-contour loss. The 2D annual ring contours from Section 5.1.2

correspond to iso-contours of the 3D growth field, enabling their use

as effective optimization constraints (Figure 14). Given a contour

𝐶𝑖 (a set of pixels included in a connected component), we define

an iso-contour loss that minimizes the variation of values of𝐺 along

the contour 𝐶𝑖 , by minimizing the difference between each point’s

value to the average value along the contour:

Lic (𝜔,𝐶𝑖 ) :=
1

|𝐶𝑖 |
∑︁
𝑝∈𝐶𝑖

����𝐺 (𝜔, 𝑝′) − 1

|𝐶𝑖 |
∑︁
𝑝′∈𝐶𝑖

𝐺 (𝜔, 𝑝′)
����. (2)

Target contours Lower iso-contour loss

Fig. 14. Iso-contour loss promotes convergence to a 3D growth field, whose
level sets on faces align with a prescribed set of target contours.

5.2.3 Optimization. The recovery of the pith axis and annual ring

distortions occur in sequence (Figure 15).

a. Pith b. Annual ring distortions

Backprop.

Target contours

G(O*, V*, R₀) :

, )L
ic(

Backprop. Boundary BoundaryBoundary

map to M*

Target annual ring 
localization images

, ) + Lim( , )Lic(

G(O, V, R*) :

Fig. 15. Overview of the growth field fitting. a. Optimization of the pith
axis (𝑂̂ , 𝑉̂ ), and b. the radial growth speeds (𝑅̂) and a gray-map (𝑀̂).

Step 1: pith. We first optimize the pith axis (𝑂 and 𝑉 ) of an un-
deformed (i.e., 𝑅𝑖 𝑗𝑘 ≡ 1) growth field to find parameters that best

match the prescribed set of contours C = {𝐶1,𝐶2, ...,𝐶𝑁 }. Specif-
ically, we solve the following optimization using a discontinuous

coarse grid search followed by continuous gradient-based descent:

𝑂̂,𝑉 = argmin

𝑂,𝑉

𝑁∑︁
𝑖=1

Lic ( [𝑂,𝑉 , 1],𝐶𝑖 ) (3)

Step 2: distortions. Annual rings can be heavily distorted, which

the previous step fails to consider. Intuitively, we should be able to

reproduce this distortions by optimizing the tree’s spatially varying

growth rate 𝑅 via the loss

L1 (𝑅) :=
𝑁∑︁
𝑖=1

Lic ( [𝑂,𝑉 , 𝑅],𝐶𝑖 ) (4)

While this indeed corrects the iso-contour alignment, it does not

position annual rings in an absolute sense. One way to recover their

position would be to apply the oscillatory mapping 𝐼 (Equation 1,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Figure 12) to generate images that can be compared to the U-net’s

output (denoted 𝐼
ref

):

L2 (𝑅) := ∥ 𝐼 (𝐺 ( [𝑂,𝑉 , 𝑅], )) − 𝐼
ref

∥1, (5)

where “ ” indicates simultaneous evaluation on all cube faces.

However, this constrains annual rings to integer values of𝐺 , which

we found to be exceedingly challenging to optimize. For example,

inserting a new annual ring requires a concerted update of all entries

of 𝑅 to preserve the other ring positions at their integer positions. In

practice, we often observe convergence to suboptimal local minima.

Rather, we replace 𝐼 with a piecewise linear function𝑀 : R→R
that assigns a gray value to each growth field value. That parame-

terized function becomes a part of the optimization:

L′
2
(𝑅,𝑀) := ∥𝑀 (𝐺 ( [𝑂,𝑉 , 𝑅], )) − 𝐼

ref
∥1 . (6)

This indirection makes it possible to place annual rings at arbitrary

locations, not limited to integer values of𝐺 . We finally optimize a

linear combination of both losses

𝑅, 𝑀̂ = argmin

𝑅,𝑀

𝜆1L1 (𝑅) + 𝜆2L′
2
(𝑅,𝑀)

The annual ring positions are easy to extract as a post-process by

locating global maxima of 𝑀̂ . Specifically, we apply a threshold

and extract the location of the centers of each detected area. The

final output comprises the volumetric growth field (𝐺 (𝜔̂)) and the

iso-curve values (𝐴 ∈ R) of annual rings in the field.

5.2.4 Knots. In the rare case where a sample contains a knot, we

introduce an additional parameter set𝜔𝑘 , detonating the parameters

of the growth field of the knot (as opposed to the pith of the stem),

and a smoothness parameter 𝑠 ∈ R, which controls the shape of

the stem-to-knot union. We use Larsson et al. [2022]’s method that

evaluates a smooth minimum of growth fields around individual

skeleton strands:

𝐺𝑘 (𝜔,𝜔𝑘 , 𝑠, 𝑝) = smooth_min(𝐺 (𝜔, 𝑝),𝐺 (𝜔𝑘 , 𝑝), 𝑠) . (7)

To find the optimal parameters (𝜔̂ , 𝜔𝑘 , 𝑠) of a sample with a knot,

we apply the same optimization framework as before (refer to Sec-

tion 5.2.3) after replacing𝐺 (𝜔) with𝐺𝑘 (𝜔,𝜔𝑘 , 𝑠). Importantly, [𝑂𝑘 ,

𝑉𝑘 ] ∈ 𝜔𝑘 requires a close-to-optimal initialization, which is con-

structed by manually marking the center points of a knot on the

external images. There are typically two center points (the enter and

exit points) because a knot typically penetrates through a sample,

from which we construct the initial knot axis.

5.3 Synthesizing 3D Color Textures
After inferring the 3D procedural growth field, our next goal is to

produce an RGB color volume of the wood texture that matches

the appearance of the real wood as closely as possible, including

details of the texture such as rays and pores. We apply two different

techniques—inference of the parameters of a procedural texture

(Section 5.3.1) and NCA (Section 5.3.2). Both techniques use the

VGG-based style loss proposed by Kolkin et al. [2019].

5.3.1 Approach 1: inverse 3D procedural texturing. We introduce

a function 𝐹 (𝐺 (𝜔̂), 𝐴, 𝜙) that takes the inferred global structure

(𝐺 (𝜔̂) and 𝐴) and a set of additional parameters (𝜙) as input, and

produces a color volume. We model the annual rings, fibers, pores,

and rays based on Liu et al. [2016]’s formulation of the wood proce-

dural model, with some simplifications and extensions. In particular,

we simplify by not modeling surface depth nor complex light in-

teractions (Figure 16). Furthermore, we model the fiber direction

as parallel to the pith axis. The extensions include two color-map

parameters (size 64 × 3) that control the radial-outward color varia-

tions of the early- and late-wood areas, respectively, facilitating the

inverse modeling of sap-to-hardwood color transitions. For knots,

we employ a similar color map. Overall, 𝜙 includes 436 values (or

639 values with one knot).

Variable 
roughness
of rays

Pore depth

a. Liu et al 2016 b. Ours

Fig. 16. a. Procedural wood texture based on Liu et al. [2016]. b.Our version
which does not model complex light–material interactions based on variable
reflectivity or depth (normal direction).

To determine the optimal parameter set
ˆ𝜙 , we initialize annual

ring colors using a continuous optimization and L1 image loss, then

switch to style loss, perform a coarse grid search of fiber, pore, and

ray sizes, followed by a continuous optimization of all parameters

in 𝜙 .

5.3.2 Approach 2: 3D neural cellular automata. To generate finer

details of the wood texture, we first evaluate the growth field on a

𝐻 ×𝑊 × 𝐷 grid of coordinates, giving a growth field tensor G. We

then fit an averagewood color to each growth field value, using a loss

similar to Equation 6, yielding a base color tensor B. Although the

base color approximates the reference, it lacks fine details like pores

and subtle grains. To recover this missing complexity, we adapt the

2D NCA framework from Pajouheshgar et al. [2024a; 2023] to a 3D

volumetric setting and train the NCA to learn a residual to enhance

the base color 𝐵.

Each cell in our 3D grid of size 𝐻 ×𝑊 × 𝐷 maintains a high-

dimensional state S ∈ R𝐻×𝑊 ×𝐷×𝐶
, where the number of channels

𝐶 = 12 in our experiments and the first three channels store the resid-

ual RGB color. As wood’s fine details depend strongly on anatomical

context such as ring structure, we incorporate wood-specific priors

into NCA by concatenating the base color B and growth field G
with the cell state S, thereby forming an augmented state tensor.

In Section 6.5, we show that conditioning the NCA on B and G
strongly boosts synthesis quality; ablations omitting these priors

lead to less realistic growth-ring continuity and color variation in

the volumetric texture.

Each cell then gathers information from its local 3 × 3 × 3 neigh-

borhood by convolving the augmented state tensor with five fixed

3D convolution kernels: identity, three Sobel filters (approximating

spatial gradients ∇x,∇y,∇z), and a 27-point stencil approximation

of the Laplacian operator ∇2
. This yields a (5𝐶 + 10)-dimensional
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vector for each cell, which is then concatenated with the cell’s 3D

coordinates (𝑥,𝑦, 𝑧) to form a (5𝐶 +13)-dimensional input to a multi

layered perceptron (MLP)with two layers, which calculates the resid-

ual cell state update (Figure 17). By unrolling this update rule for

many iterations and applying a VGG-based style loss on the cube’s

visible faces, we train the NCA model parameters via backpropa-

gation through time. We adopt the open-source implementation,

training strategies, and style-loss functions from Pajouheshgar et al.

[2024a].

Depthwise Convolution

𝑮!×#×$×%

𝐒!×#×$×%&

𝑩!×#×$×%

Convolution 
Kernels ∇" ∇# ∇$ ∇%𝟙

𝐻×𝑊×𝐷×(𝐶+2)

Fully Connected
ReLU

Fully Connected

𝐻×𝑊×𝐷×(5𝐶+13)

𝐒!×#×$×%&'(

NCA State

𝑷!×#×$×0

Concat

Fig. 17. Overview of 3D NCA architecture for wood texture synthesis.

6 RESULTS
In this section, we show visual outputs of our method compared

to ground truth (Section 6.1) and a related work (Section 6.2), and

present evaluations of individual components of our pipeline: the

structural information extraction (Section 6.3), the global inference

(Section 6.4), and the NCA texture synthesis (Section 6.5).

6.1 Qualitative Evaluation of Synthesized Textures
Figures 18-19 present visualizations of the 38 test cubes with slanted

cuts constructed from ground truth photographs alongside the out-

puts of our pipeline: the growth-field and the two texture synthesis

methods (procedural texture and NCA). Both methods often suc-

cessfully reproduce heart-to-sapwood color transitions (e.g., IC-04)

and local color differences (H-14), and likewise for pore distribu-

tions (e.g., CN-01) and ray orientations (e.g., RO-03). Owing to its

flexibility, the NCA reproduces dense and complex ray patterns for

which the procedural model finds a close but not fully satisfactory

approximation within its expressivity (e.g., RO-09). The NCA model

also reproduces a gum inclusion on the cut surface of MZ-03, though

not in the ground truth location, showing its ability to reproduce

irregular features beyond that which is included in our (or any ex-

isitng) procedural wood model. However, the NCA model does not

recognize saw marks as a 2D surface artifact, and partially repro-

duces them on the cut surface unrealistically (e.g., H-01). Finally, the

NCA shows a relatively better capacity to recover when the growth

field reconstruction is poor (e.g., N-01).

6.2 Visual comparison
Figure 20 shows the outputs from Larsson et al. [2024]’s method,

showing that it does not reconstruct knots (H-11) or heart-to-sapwood

transitions (P-06) as well as our method does. Moreover, note that

their method takes contours numbered-by-year (Figure 21a) as input,
and thus it cannot we cannot apply it directly on our automatically

extracted unordered edges (Figure 21b, refer to Section 5.1.2), as

would be required for fair comparison. Instead, we applied it to

the manually annotated annual ring trances of our dataset (refer

to Section 4.3.2) because they are numbered. However, the man-

ually annotated traces are naturally more complete and accurate

compared to the automatically extracted edges that our results in

Figures 18-19 are based on.

6.3 2D Annual Ring Localization
In this section, we show the species-wise performance of the annual

ring localization image generation (Section 6.3.1) and a generaliza-

tion test (Section 6.3.2). We also evaluate the accuracy of the edges

extracted from the annual ring localization image compared to other

methods (Section 6.3.3).

6.3.1 Performance. The image losses of the annual ring localization

images vary when comparing different species (Figure 22). Moreover,

we observe that the model performs best on the most regular cases

when annual rings are distinct and complex patterns are not present

(e.g., MP-07-B in Figure 23). The model also typically successfully

ignores superimposed visual patterns like sap-to-heart wood borders

(e.g., IC-04-B), cut marks (e.g., H-14-D), and distinct rays and pores

(e.g., N-01-C in Figure 23). Extremely subtle, barely visible annual

rings, however, appear to be more challenging (e.g., S-08-C and

TC-04-B in Figure 23). Occasionally, there are block-like black solid

artifacts due to patch blending (e.g., towards upper left in H-14-D

in Figure 23).

6.3.2 Generalization test. We conducted an experiment to evaluate

the ability of the model to generalize to unseen species. The 17

species were randomly divided into five groups of three species

each and one group of two species. For each group, we trained

the network on all samples from the species outside the group and

evaluated its performance on the unseen species within the group

(Figure 24). The median image loss across the six experiments is

0.20, which is somewhat higher compared to 0.17 of our standard

setting, where the network is trained on 80% of the samples from

each species and evaluated on the remaining 20%.

6.3.3 Contour extraction. We evaluate the quality of the contours

extracted from our generated annual ring localization, and compare

it to one ablation and two baselines. The ablation entails omitting

the power of 10 in the annual ring localization image construction

(refer to Section 5.1.1). The two baselines are extracting contours

from 1) a thresholded gray-scale wood photograph directly, 2) a

wood photograph after applying a k-means filter (𝑘 = 2) [Lloyd

1982]. The quality of extracted contours are measured by their iso-

contour error against the ground truth continuous growth field

(refer to Figure 12c). Moreover, since the iso-contour error can be

minimized with no contours detected, we additionally report the

ratios of the ground truth contour length and count to confirm that a

sufficient length and amount of contours have been detected, where

ground truth contours are those extracted from the ground truth

annual ring localization image (refer to Figure 12e). Our method out-

performs alternatives in terms of median average iso-contour error

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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B-08
GT GF Proc NCA

B-10
GT GF Proc NCA

BW-02
GT GF Proc NCA

BW-06
GT GF Proc NCA

CH-04
GT GF Proc NCA

CH-06
GT GF Proc NCA

CN-01
GT GF Proc NCA

CN-03
GT GF Proc NCA

H-01
GT GF Proc NCA

H-11
GT GF Proc NCA

H-06
GT GF Proc NCA

H-14
GT GF Proc NCA

IC-04
GT GF Proc NCA

IC-06
GT GF Proc NCA

K-04
GT GF Proc NCA

K-08
GT GF Proc NCA

KR-01
GT GF Proc NCA

KR-07
GT GF Proc NCA

Fig. 18. Qualitative validation (continued on the next page). This matrix covers two samples (columns) from the test subset of each species (rows), showing
a held-out ground truth photograph of the physically cut wood cube (sub-column 1), compared to slanted cuts through the reconstructed growth field
(sub-column 2) and synthesized solid wood textures (sub-column 3, 4). When comparing the outputs, note that, while it is our objective to closely infer the
annual ring locations relative to the reference, we do not expect to reconstruct texture details (pores, rays) with a one-to-one pixel correspondence. Rather, we
effectively model their distributions. See Section 6.1 for further discussion of these results. Videos of rotating cubes for all 38 samples can be found in the
supplementary materials.
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MP-04
GT GF Proc NCA

MP-07
GT GF Proc NCA

MZ-03
GT GF Proc NCA

MZ-08
GT GF Proc NCA

N-01
GT GF Proc NCA

N-07
GT GF Proc NCA

NR-04
GT GF Proc NCA

NR-10
GT GF Proc NCA

P-06
GT GF Proc NCA

P-10
GT GF Proc NCA

RO-03
GT GF Proc NCA

RO-09
GT GF Proc NCA

S-02
GT GF Proc NCA

S-08
GT GF Proc NCA

SG-03
GT GF Proc NCA

SG-15
GT GF Proc NCA

SG-06
GT GF Proc NCA

SG-16
GT GF Proc NCA

TC-04
GT GF Proc NCA

TC-05
GT GF Proc NCA

Fig. 19. Continuation of Figure 18.
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N-01
GT

Larsson et
al 2024

H-11
GT

Larsson et
al 2024

P-06
GT

Larsson et
al 2024

MP-07
GT

Larsson et
al 2024

TC-05
GT

Larsson et
al 2024

CN-03
GT

Larsson et
al 2024

Fig. 20. Qualitative outputs of related work. Outputs of the inference
method of Larsson et al. [2024] applied to six samples from the Mokume
dataset. Note that these were created based on manually annotated and
numbered annual ring trances, as opposed to automatically extracted from
input photographs.

b. Automatically extracted unorderd edges a. Manual traced and numberd edges 

CN-03

6
7

8
9

10

11

Fig. 21. Edge types. a.Manually annotated numbered annual ring traces,
based on which the results of Larsson et al. [2024] in Figure 20 are generated.
b. Automatically extracted, unordered edges, based on which our results in
Figures 18–19 are generated.

Fig. 22. Performance of the annual ring localization image translation. Image
loss of each species of U-Net generated annual ring localization images. The
species are organized by ascending order of loss. The dashed line indicates
the median image loss across all species.

(Figure 25). Moreover, the length and count ratios of the baselines

deviate significantly from 1.0, indicating that extracted contours are

either overly few and overly short, or overly long and overly many.

6.4 3D Procedural Growth Field Fitting
This section presents an ablation study focusing on the optimiza-

tion of annual ring distortions (Section 6.4.1). Analysis of the pith
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H-14-DIC-04-BMP-07-B S-08-C TC-04-B

Fig. 23. Example outputs of the annual ring localization image translation.
Top: color image of the wood (input). Middle: ground truth annual ring
localization images created from manual annotations (target). Bottom: U-
Net generated annual ring localization images (output).

Fig. 24. Generalization test of the annual ring localization image translation.
Box 1 ("None") represents the results when the network is trained on 80% of
all species and evaluated on the remaining 20%. Boxes 2–7 ("B, KR, IC," and
so on) show the results when the network is trained on 100% of the samples
of all species except a specific group of 2–3 species and evaluated on the
unseen species in that group. The dashed line indicates the median loss of
box 1.

Fig. 25. Quality of extracted contours. Comparison between our method,
an ablation, and two baselines. Each box shows the distribution of the
average errors and ratios for the 228 images (6 × 38) in our test set. Lower
iso-contour error indicates that the contours better follow the zero-gradient
of the ground truth growth field. The dashed black line shows the median
average iso-contour error of the proposed method (0.006). The dashed gray
line indicates the ideal ratio (1.0) of contour lengths and counts.

estimation step and growth rate (𝑅) parameter resolution can be

found in Appendices B.1 and B.2, respectively.
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6.4.1 Optimization step 2: distortions. In global structure inference

step 2, we optimize the distortions of the growth field, which are

adjusted through the control radii (𝑅 ∈ R𝑛ℎ×𝑛𝑎×𝑛𝑟
), and the gray-

map (𝑀) from which the iso-values of the annual rings are extracted

(refer to Section 5.2.3). Possible questions includes, is it important

that 𝑅 represents the growth speed at a point rather than the ex-

plicit growth value, and is the iso-contour loss necessary? We ran

ablation experiments to answer these questions. Specifically, we

compare our method to two ablations: 1) with an alternative explicit

construction of 𝑅, 2) without iso-contour loss (just the image loss

between target and output annual ring localization images drives

the optimization). We evaluate the results against the ground truth

annual ring annotations by two metrics. First, if the annual ring lo-

calization is correct, the color values of the annotated pixels should

be white, and therefore, we report the average pixel colors at the an-

notation pixel locations. Second, we measure the iso-contour error

of the ground truth annotated annual ring edges in the underlying

growth-field from which the annual ring localization is constructed.

This measures how well the annual ring pattern in the procedurally

generated annual ring patterns follow the ground truth shapes.

Our method creates outputs with a lower median iso-contour

errors, while median color values are similar for all methods (Fig-

ure 26). This is confirmed by the visual outputs, where we observe

that estimated annual rings in the ablations frequently “jump” be-

tween different GT annual rings, that is, not following their shape

although hitting many peaks (Figure 27). In ablation 1 (explicit con-

struction of R) there are visual artifacts caused by this construction

not guaranteeing that an inner radius is smaller than an outer ra-

dius. This shows up as annual rings crossing each other, which is

anatomically infeasible.

Fig. 26. Ablation study of the annual ring distortions and locations optimiza-
tion. Each box shows the distribution of losses for the 38 samples in the test
dataset. A better estimated annual ring localization image is characterized
by a lower iso-contour error (ideally 0.0), and a higher gray value (ideally
1.0, white).

6.5 Ablation of NCA
NCAs generally excel at synthesizing repetitive patterns or textures

without strong global structures. Pajouheshgar et al. [2023] showed

that positional encodings can help capture some long-range correla-

tions of the target texture. However, by ablating the wood-specific

conditioning and omitting B and G from the NCA architecture, we

showed that positional encoding alone is insufficient for producing

coherent solid wood texture. Without our wood-specific priors, the

Target Ours Ablation 1 Ablation 2 

SG-16

Fig. 27. Visual outputs from the ablation study of the annual ring distortions
and locations optimization. The optimization target are the external annual
ring localization images generated by the U-Net (along with the contours
extracted from it). In the ablations, annual rings tend to jump up or down
between different GT annual rings.

annual rings become discontinuous (e.g., CN-01), the rays form in an

incorrect direction (e.g., B-08), and the knots fail to form properly in

the synthesized textures (e.g., H-11, Figure 28). This highlights that

while positional encoding can help NCAs to model some aspects of

a global structure, they cannot substitute our global wood structure

priors.

CN-01
NCA

NCA-
abl. GT

B-08
NCA

NCA-
abl. GT

H-11
NCA

NCA-
abl. GT

Fig. 28. Visual outputs from the NCA ablation study. Omitting the priors
of the global wood structure leads to discontinuous annual rings (CN-01),
incorrect orientation of rays (B-08), and indistinct knot structure (H-11).

7 LIMITATIONS
We have not yet captured samples in the Mokume dataset under
varying lighting conditions, the dataset is limited to one sample size

([4.0 cm]3). Moreover, although we included samples from many

(17) species, this list is not exhaustive. That being said, the Mokume
dataset includes species with a wide variety of anatomical features

andmaterial imperfections, and the generalization test (Section 6.3.2)

indicates that the method could be applied to unseen species with

a reasonable expectation of success. For example, birch and acacia

are classified as HW-DP-R, a category represented by six species

in our dataset (B, BW, MP, MZ, P, and TC), while ash and teak are

HW-RP-R, represented by three species (K, N, and RO).
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Our annual ring localization step sometimes fails to generate

accurate and continuous annual ring contours, leading to down-

stream errors in reconstitution. In particular, block-like artifacts

could potentially be mitigated by a more advanced patching strategy

at multiple scales or with confidence weighting.

We approximate the pith as a straight line, and our parametriza-

tion of annual ring distortions is based on the assumptions that

annual rings are star-shaped relative to the closest point the pith

axis (or the knot axis). While a more complex formulation of the pith

and distortions is unnecessary for our target samples, it could prove

beneficial for handling highly distorted wood instances. While a

more complex formulation of the pith and the distortions would

be unlikely to yield better results for our target samples, it could

prove beneficial for extremely distorted wood instances. Moreover,

we model only alive knots (not dead or broken off ones), do not

apply growth distortions to the knots, and approximate their central

skeleton as a straight line.

As for texture synthesis, our procedural texturing model is a

simplification of the state-of-the-art ([Liu et al. 2016] (refer to Sec-

tion 5.3.1). The main limitation of the NCA is that a single state

tensor (256 × 256 × 256 × 12) requires 384 MiB of storage in float16

precision. Backpropagating derivatives through a sequence of NCA

updates requires intermediate states to be held in memory, which

can saturate the memory of even the largest GPUs on the market.

8 CONCLUSION
The Mokume dataset provides a comprehensive new resource for

wood structure modeling, offering exceptional diversity by cov-

ering various species with high-resolution multimodal data. We

demonstrate how the combination of this dataset with computa-

tional models has powerful predictive capabilities, evidenced by

high-fidelity synthetic wood textures that closely align with unseen

ground truth data.

Central to our approach is the use of annual ring patterns as a

deterministic feature, while fine-scale details (rays, pores, etc.) are

treated as a learnable stochastic distribution. A compelling avenue

for future research could involve extrapolating beyond the sample’s

boundaries. This would necessitate a modified methodology focused

on capturing the overall "style" of distortions rather than achieving

an exact match.

The potential applications of inverse procedural modeling are

numerous and span diverse fields. Examples include predicting the

visual outcome of sculptural pieces before physical carving, synthe-

sizing extensive libraries of realistic materials for digital rendering,

or the inference of non-visual properties: since the global structure

of wood determines its mechanical properties, we envision the use

of growth fields to augment simulations of material deformation and

strength, using the resulting insights to guide irreversible processes

such as milling and cutting. Another potential research area is the

directional reflectance behavior caused by the anisotropic nature

of wood fibers. While previous research required complex gonio-

photometric measurements to infer their properties, we hypothesize

that such effects could also be retrofitted to our work, as the fiber

direction is inherently tied to the growth field.

Besides serving as a benchmark for procedural and learning-

based texture synthesis, we hope that the release of the Mokume
will catalyze interdisciplinary research to to explore the manifold

properties of wood.
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A IMPLEMENTATION DETAILS

A.1 Dataset
A.1.1 Cube unfolding convention. Figure 29 shows the cube unfold-
ing convention that we employ.
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Fig. 29. Cube unfolding convention. Physical samples are oriented such that
the principal pith direction is aligned with the B-D direction. The principal
pith direction is the orthogonal axis that is most closely aligned with the
pith direction.

A.1.2 Annual ring annotation data. The annotated data is stored

in a 1-channel 256
2
image where the integer value of each pixel

corresponds to the year of the ring, except the background value

255 (Figure 30). The year-tags of the traces are numbered relatively

rather than absolutely, as determining the exact age of a ring is

infeasible without the cutout including the pith.

The total number of annual ring traces in all 1,140 photos of

external surfaces are approximately 12,600 (average about 11 traces

per external surface). The total length of all traces is approximately

2,300,000 pixels, corresponding to roughly 420 meters (per external

surface average of about 2,300 pixels, corresponding to 37 cm).

256 px

25
6 

px

K-04-A

12

11

10

962… … …

255 (background)

Fig. 30. Data for numbered annual ring traces.

A.1.3 Computed tomography scans. The scanner was set to an

acceleration voltage of 180 kV and a current of 5.55 mA. The recon-

struction of the images utilized the KVD-1PI algorithm [Katsevich

2002].
3
We scanned five samples at a time and cropped out each

sample.

A.1.4 Cut surfaces. We used two different types of cuts, shown in

Figure 31.

A.2 Inverse Modeling Method
A.2.1 2D Annual ring localization from photographs. As for the
image translation (Section 5.1), we train a U-Net on all training

data. Since the training data is relatively limited (912 images after

setting aside 80% for evaluation), we train on patches . Specifically,

3
Alexander Katsevich. 2002. Theoretically Exact Filtered Backprojection-Type Inver-

sion Algorithm for Spiral CT. SIAM J. Appl. Math. 62 (2002), 2012–2026. https://api.

semanticscholar.org/CorpusID:45126757
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Fig. 31. A sub-set of cubes are split in two parts to photograph the cut
surface. There are two types of angular cuts. Type 1 (left) cuts through the
principal pith axis. Type 2 (right) is placed along the principal pith axis.

after setting the full image size to 256
2
pixels, we train on patches

of size 64
2
pixels (corresponding to 1.02 cm) randomly sampled

with varying location and orientation (16 patches per image gives

16 × 912 = 14, 592 patches in total). In addition to increasing the

amount and diversity of the data, this approach enables input images

with varying aspect ratios, which is crucial for handling input wood

blocks with various sizes and proportions. During inference, we

evaluate the network on a sliding window and reconstruct an image

by blending the overlapping areas.

We set the batch size as 256 and number of epochs to 2, 000 and use

an adaptive learning rate, starting at 0.005 and decreasing linearly to

0.0005 until the end. The learning rate is updated every 100 epochs.

During the last 200 epochs, we lower the batch size to 128, and lock

all but the last layers.

A.2.2 Fitting a 3D procedural growth field. The system was imple-

mented using PyTorch and uses Adam [Kingma 2015]
4
as optimizer.

We set the number of height levels 𝑛ℎ to 8, the number of spokes

𝑛𝑎 to 16, the number of rings 𝑛𝑟 to 16, which were experimentally

found to be effective (refer to B.2).

A.2.3 Texture synthesis approach 1: inverse procedural texturing.
Below is a list of the parameters of the detailed procedural model

(additional to the global structure parameters). The total count is

436 (or 630 with one knot).

• Earlywood color parameters: a base color (size 3) and a 1D color

map for outward variation (size 64 × 3).

• Latewood color parameters: same as above.

• Side color: a color for each external surface (size 6 × 3).

• Early-to-latewood color transition parameters: start, end, smooth

blend, linear blend.

• Fiber parameters: size, color strength, darkness strength, strength

on late wood.

• Pore parameters: radius, size of base cell (width/length and

height), color (size 3), anisotropy strength, general occurrence

ratio, latewood occurance ratio, occurrence–annual ring corre-

lation factor, scale–annual ring correlation factor.

• Ray parameters: radius, size of base cell (width, length and

height), color (size 3), occurrence ratio.

• Knot parameters: 1D color map (size 64 × 3), and anisotropy

strength, knot-to-stem color transition smoothness.

A.2.4 Texture synthesis alternative 2: neural cellular automata. We

train our neural cellular automaton (NCA) on a 256
3
cube using a

single H100 NVIDIA GPU with mixed-precision to save memory.

The NCA maintains 12 channels per cell, and its MLP adaptation

4
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In iclr, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980
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network has 128 hidden neurons, for approximately 11, k parameters.

We train the model for 1, 500 epochs with a batch size of 1, applying

the style loss averaged over all 6 cube faces.

To stabilize training, we adopt a pooling technique with a pool

size of 32, alongside the overflow loss from Niklasson, et al. [2021].
5

Gradient checkpointing further helps reduce memory usage, trading

off additional compute. We use the Adamp optimizer with an initial

learning rate of 0.001, decayed by a factor of 0.3 at epochs 700 and

1, 200. We additionally employ the grafting technique introduced by

Pajouheshgar, et al. [2024]
6
to improve training convergence. We

first train on sample "B08" then initialize subsequent trainings with

the learned weights from that model.

After training completes, we unroll the NCA for 200 update steps

and take S200 as the final state. We then add these RGB channels to

the base color B to obtain the final volumetric texture.

B EXTENDED EVALUATION

B.1 Pith Estimation
Pith estimation refers to the first step in the differentiable texturing

framework: estimating the pith origin (𝑂) and its direction (𝑉 , refer

to Section 5.2.3). Evaluating pith estimation is difficult without

ground truth (GT) data, which is available only in samples that

include the pith (e.g., SG-09, refer to Figure 6a). In the Mokume
dataset, most samples—and all test samples—do not include the pith.

However, the accuracy of the pith estimation can be systematically

evaluated by comparing the shape of the estimated growth field

with photographs of the actual sample by observational validation.

Therefore, we evaluated the pith estimation as follows. We ran

the pith inference (optimization step 1) against contours extracted

from the GT annual ring localization images created from manual

annotations (refer to Figure 12), and verify by observation that all

output growth fields are reasonable approximations of the the real

wood patterns.We consider these output pith poses as a “pseudo GT.”

Subsequently, we ran the pith inference against contours extracted

from the annual ring localization images created by image transla-

tion (refer to Section 5.1), and measured the difference compared

to the pseudo GT (Figure 32). The results show that the distance

between pith origins range from 0.0 to 49 cm with a median average

of 1.4 cm (Figure 32-top), and the angle between the pith direction

vectors range from 0.1 to 85 degrees with a median average of 3.0

degrees (Figure 32-middle).

Relatively poor estimations (B-10, BW-06, CN-03, H-11, KR-07,

MZ-03, N-01, NR-04, P-10, RO-03, S-02, SG-06, TC-04, TC-05), can

largely be attributed to poorer quality of the U-Net generated annual

ring localization images. However, three samples (BW-06, N-01 and

NR-04) stands out, having exceptionally high distances between

the estimated pith origins (Figure 32-top). In these three samples,

the pith origin is far from the cut-out region, resulting in nearly

parallel annual rings and ambiguity in pith orientation. Measuring

the pith direction relative to the sample center confirms this, with

differences of about 180 degrees, indicating opposite orientations

5
Eyvind Niklasson, Alexander Mordvintsev, Ettore Randazzo, and Michael Levin. 2021.

Self-organising textures. Distill 6, 2 (2021), e00027–003

6
Ehsan Pajouheshgar, Yitao Xu, Alexander Mordvintsev, Eyvind Niklasson, Tong Zhang,

and Sabine Süsstrunk. 2024b.MeshNeural Cellular Automata. ACMTrans. Graph. (2024).

https://doi.org/10.1145/3658127 Ehsan , Yitao Xu, and Sa

(Figure 32-bottom). This flipped pith origin still offers a reasonable

approximation of the volumetric shape of the annual rings in the

sample. Possible problems include the modeling of features that are

related to the direction of growth, such as knots and pores with

direction-dependent distributions.

The existence of the challenging cases raises the question, are

there other such cases that are possibly inferred wrongly in the

pseudo GT? To analyze this, we go through all samples andmanually

identify 9 samples (IC-04, IC-06, N-01, NR-04, NR-10, P-06, P-10,

S-02, TC-04) with close-to-parallel annual rings. Although it might

be possible to analyze the details of the texture in the photographs

to determine if the inferred pith is flipped or not, we find it difficult

to make a definite conclusion for these samples and mark them as

ambiguous (red colored sample names in Figure 32).

Fig. 32. Pith inference (optimization step 1) analysis comparing pith poses
inferred based on edges extracted from annual ring localization images
created from annotated data (pseudo GT) and those inferred based on edges
extracted from annual ring localization images created automatically by
image translation (ours). Samples where the pith locations lies far from the
sample center and which thus have nearly parallel annual rings are marked
by red, indicating that these are ambiguous cases where we were unable to
verify if the origin direction is in one direction or the opposite.

B.2 Resolution of 𝑅
The resolution 𝑛ℎ × 𝑛𝑎 × 𝑛𝑟 of 𝑅 is fixed during the optimization.

There is a trade-off between quality (higher resolution allow for

more precise approximation) and efficiency (lower resolutions allow

for faster calculation and lower memory storage). We performed

an experiment evaluating different combinations of 𝑛ℎ , 𝑛𝑎 , and

𝑛𝑟 . For each of the three resolution axes, we tested five different

resolutions—2, 4, 8, 16, and 32—while keeping the other two axis

fixed at 8. For each combination and for all 38 test samples, we ran

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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optimization step 2, and recoded the output losses and computa-

tion times. For different height level resolutions, the loss decrease

until resolution 8, and then remain rather constant, while computa-

tion times are approximately constant throughout, or even decrease

slightly (Figure 33-top). For spoke and radius resolutions the losses

decrease with higher resolutions, at least until 16, while computa-

tion times increase rather linearly (Figure 33-middle and bottom).

The relative higher importance of spoke and radius resolution is

consistent with our observations that distortions of annual ring pat-

terns are stronger in cross-planes compared to vertical planes. Based

on these results, we chose the resolution setting 𝑛ℎ = 8, 𝑛𝑎 = 16,

and 𝑛𝑟 = 16 in our implementation.

Resolitions of R

nh nh

nₐ nₐ

nr nr

Fig. 33. Plots of losses (left) and computation times (right) considering
different values for 𝑛ℎ (top), 𝑛𝑎 (middle), and 𝑛𝑟 (bottom). For each of the
three resolution axes, we test the five values 2, 4, 8, 16, and 32, while keeping
the other two axes fixed at 8. Each box shows the distribution of losses or
computation times for the 38 samples in the test dataset.
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