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Figure 1: a) Photographs of a wood block and its unfolded external surfaces with manually traced annual rings. b) The inferred volumetric
growth time field (GTF). c) The annual ring field (ARF) converted from the GTF. d) A solid wood texture with realistic colors and detailed
features. e) A rendered cut surface inside the volume. f) The corresponding cut of the physical wood block.

Abstract

We propose a method for inferring the internal anisotropic volumetric texture of a given wood block from annotated photographs
of its external surfaces. The global structure of the annual ring pattern is represented using a continuous spatial scalar field
referred to as the growth time field (GTF). First, we train a generic neural model that can represent various GTFs using
procedurally generated training data. Next, we fit the generic model to the GTF of a given wood block based on surface
annotations. Finally, we convert the GTF to an annual ring field (ARF) revealing the layered pattern and apply neural style
transfer to render orientation-dependent small-scale features and colors on a cut surface. We show rendered results of various
physically cut real wood samples. Our method has physical and virtual applications such as cut-preview before subtractive
fabricating solid wood artifacts and simulating object breaking.

CCS Concepts
•Computing methodologies → Volumetric models;

1. Introduction

Solid wood is a ubiquitous material with a characteristic texture
that is unique to each material instance. Its modeling includes two
aspects: 1) the global structure of the annual ring pattern and 2)
the detailed appearance of the color transitions and small-scale
features. In this paper, we address these two aspects aiming to

† These two authors contributed equally to this work.

infer a solid texture based on the visible exterior surfaces of a
physical block of wood (Figure 2). This is potentially useful for
physical as well as virtual applications. When it comes to physical
applications, it enables predicting the appearance of wood artifacts
before fabrication by subtractive manufacturing, such as milling or
cutting. Regarding virtual applications, it enables the generation of
the texture of a surface that is revealed when an object breaks. The
inputs to our method are photographs of the six external surfaces
of a wood block and annotations on these photographs in the form
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of traces of the annual rings numbered by year. The output is a
volumetric model of the wood block enabling the rendering of a cut
surface inside the block.

For the first aspect of wood texture modeling—1) the global
structure of the annual ring pattern—our key insight is that the
pattern can be represented akin to a signed distance field (SDF),
which is typically used for implicit surface modeling. This similarity
in representation is significant because it opens up the possibility
to leverage SDF-based 3D generative modeling techniques for our
problem. Specifically, Park et al. proposed a network for SDF model-
ing of 3D geometries capable of shape completion and interpolation
from noisy and partial input 3D data [PFS∗19]. We employ this net-
work to a different domain—volumetric material modeling—aiming
to complete annual ring patterns based on partial information in the
form of the ring traces on the exterior surfaces.

The SDF-like data representation that we use is referred to as a
growth time field (GTF). It is based on the logic of cambial tree
growth, which is the type of growth that gives rise to the annual
ring pattern. Cambial growth starts from the center and proceeds
outwards, consecutively adding a layer of material over the previous
layer each year. We associate the cylindrical surface of each layer
with the growth time (year), obtaining a 3D continuous field—the
GTF. It is nearly equivalent to a distance field around the pith (the
central skeleton of a tree); the difference is that there is a degree of
natural distortion in the GTF caused by variations of speed of growth
at different points (otherwise the annual rings would be perfectly
circular). This representation has been used for forward modeling
of tree growth and annual ring patterns [MPW06, SPH11, KSG∗15,
LIY∗22]. However, we address the backward problem of inferring
the internal GTF from external surfaces.

To achieve the inference, we first train a generic neural model
(based on the work of Park et al. [PFS∗19]) of GTFs that predicts
the GTF value at each 3D location of a wood cuboid. This model
is trained with many procedurally generated GTF samples. Then,
we optimize a latent vector and a cutout transformation such that it
matches the annotated ring pixels on the six sides of the wood block
as closely as possible. After obtaining the GTF, it is trivial to convert
it to an annual ring field (ARF) by a modulus-based operation,
visualizing the layered pattern. An ARF is defined as a field ranging
from 0.0 to 1.0, where a lower value indicates earlywood (grows in
the spring, typically has a lighter color in real wood) and a higher
value indicates latewood (grows in the fall, typically darker). The
output of the first stage is thus a volumetric abstract representation
of the global structure (the ARF).

In the next stage—2) local appearance synthesis—we address
the problem of applying realistic colors and detailed features to
the global annual ring structure inferred in the previous stage. We
achieve this by neural style transfer, i.e., combining the content
of one image with the “artistic style” of another. In our case, the
content image is the global structure (the ARF) and the “artistic
style” is the original color photographs of the exterior of the wood
block. Specifically, we apply an existing patch-based style transfer
method [TFK∗20] that can be trained on just one image pair (an
ARF image and a color photograph). This allows us to re-train the
model for the specific style of each wood exemplar. After training,
the style transfer is applied to each layer of the volume at a given

resolution to achieve a realistic color appearance to the full interior
volume of the wood block.

Moreover, in the real world, the local appearance of wood material
varies depending on in which plane the wood is cut. The end grain—
where fibers and pores are facing the surface—tends to be rougher
and slightly darker compared to the face grain, where fibers and
pores are tangential to the surface (Figure 3). For the purpose of
modeling this anisotropic appearance, we perform the style transfers
on three orthogonal cross-sections (the exterior surfaces facing the
in x- y- and z-directions) and render a point on a cut surface based
on its surface normal. If the normal of a point faces towards the end-
grain, the proportion of color contribution from the end-grain image
is increased, and so on. The final result of the combined global
structure inference and local appearance synthesis is a volumetric
solid wood texture corresponding to a physical sample, which can
be used to render a cut surface inside the volume with a realistic
appearance of the global structure and anisotropic local features.

We evaluate our method on several physical solid wood sam-
ples by inferring their volumetric textures, after which we cut the
samples to reveal their interior textures. We present these ground
truth cut surface textures side-by-side with the corresponding pre-
dicted textures for qualitative visual comparison. We also present
a quantitative ablation and baseline comparison study. Although
not statistically significant, the study seems to suggests that our
method more robustly infers internal structures from partial annota-
tions compared to naïve interpolation using the radial basis function
(RBF). Furthermore, we show additional visual results comparing
orientation-dependent and orientation-agnostic rendering. We also
show the effect of changing the orientation of a cut surface inside a
wood block and cross-combinations of global structures with differ-
ent local appearances.

?

Figure 2: We aim to infer the internal volumetric texture of solid
wood given photographs of the exterior surfaces.

End grain

Face grain

Pores

Figure 3: Photographs of different sides of real material samples.
The local appearances (colors, small-scale features of pores, etc.)
varies on cross-sections in different orientations.
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In summary, our contributions are twofold:

• A method for inferring the global volumetric structure of a wood
block based on annotated annual rings on the external surface
using a learned generic model of annual ring patterns.

• An orientation-dependent rendering method for visualizing a cut
surface inside a solid wood block considering its anisotropic
nature.

2. Related Works

2.1. Tree Growth and Annual Ring Pattern Formation

Tree growth is divided into two types: apical and cambial. Apical
growth elongates the tree and produces new grafting strands, and it
is typically modeled with L-systems [GJB∗20, Lin68, IOI06]. Cam-
bial growth expands the thickness of the tree by adding a layer of
material to its external surface each year, and it is typically simu-
lated using the level set method [KSG∗15, MPW06]. This second
type of expansion growth gives rise to the annual ring pattern. In
temperate climates, wood grows fast in the spring, adding a thick
layer of light material. In the fall, the growth slows down, adding a
thin layer of dark material, until stopping completely in the winter.
These seasonal shifts in color make the growth layers, i.e. annual
rings, visible to the eye. Moreover, various factors (e.g., tree species,
sunlight, nutrition) give rise to variations in color and thickness.
Therefore, each piece of wood has a unique volumetric texture, even
two pieces from the same species are never the same.

2.2. Procedural Wood Texturing

Procedural texturing is a method to generate a texture on demand
based on mathematical functions and rules, rather than referring to
a stored raster image. Based on this approach, Liu et al. [LDHM16]
proposed a simulation method to generate a volumetric structure and
texture of solid wood. With their method, a user can control various
visual features of wood by tuning parameters, such as the distance
between annual rings, colors, surface reflectance, and distortions.
Moreover, Larsson et al. [LIY∗22] proposed a method to procedu-
rally model knots and the intricate annual ring distortions they give
rise to. These procedural methods are computationally efficient and
suitable for many applications, such as in games and videos where
the goal is to make the texture look plausible. However, these are
forward methods and do not refer to specific exemplars.

The inference of parameters and generation of procedural mod-
els is an active research area [LP00, HGH∗22, HHD∗22, HDR19,
GHS∗22]. For the highly realistic rendering of wood material,
Marschner et al. [MWAM05] presented a shading model dealing
with sub-surface highlighting specific to finished wood and a mea-
surement method to obtain rendering parameters from wood samples.
Lefebvre and Poulin [LP00] modeled the structure of wood; specifi-
cally, introducing a procedural wood model with concentric circular
annual rings and extracting its parameters from a 2D image. Our
method is different in that we separate the structure estimation and
appearance synthesis, provide a more general annual ring model,
and adopt the style transfer for the appearance synthesis. Moreover,
we chose a neural network over a procedural framework for the

inference problem because a neural network is differentiable, mak-
ing it easy to fit, while it can be difficult to directly fit an explicit
procedural model to a given input.

2.3. Solid Texture Synthesis

Another approach to model volumetric materials, including wood
is to synthesize a 3D texture from a 2D reference image using
non-parametric sampling or deep learning. Kopf et al. [KFCO∗07]
synthesized volumetric textures from single 2D images. They ex-
tended a 2D texture optimization method [KEBK05] to 3D and
integrated a histogram matching technique with the texture opti-
mization procedure. Dong et al. [DLTD08] synthesized only parts
of the volume used for rendering and performed pre-computation
to reduce the candidates of neighborhood matching. They also gen-
erated anisotropic volumes from multiple 2D images. Pietroni et
al. [POB∗07] synthesized a volumetric texture from multiple cross-
sectional images based on a morphing technique. For more related
studies, refer to the survey paper by Pietroni et al. [PCOS10].

Recently, deep neural network models have been applied to
solid texture synthesis. Gutierrez et al. [GRGH18] and Zhao et
al. [ZWG∗21] adopted generative adversarial networks to synthesize
solid textures from 2D exemplar images. They introduced multi-
scale representation to their models. Gutierrez et al. [GRGH18]
evaluated the similarity between the given exemplars and generated
volumes using their perceptual feature vectors of the images. In
contrast, Zhao et al. [ZWG∗21] compared 2D patches extracted
from the exemplar and generated volume directly without feature
extraction. Furthermore, Oechsle et al. [OMN∗19] represented a 3D
texture using a multilayer perceptron (MLP) model that maps 3D
position to appearance.

Henzler et al. [HMR19] reconstruct diverse captured textures
with infinite zoom by mapping them to latent texture codes and
synthesize them using a MLP model with Perlin noise. We applied
their model (a pre-trained version provided by the authors) to our
captured images of solid wood and observed that the reconstructed
output textures have a low resemblance to the target inputs (Figure 4).
However, note that direct comparison between our method and that
of Henzler et al. is not appropriate because their network takes
different inputs and outputs. Most notably, our method requires the
input of manual annotations. Moreover, the training data is different:
we train on procedurally generated 3D data whereas they train on
2D images.

Input Output

Figure 4: Results of applying the pre-trained texture synthesis model
provided by Henzler et al. [HMR19] to our captured images of solid
wood. Their model is material-specific and was trained on a non-
public wood dataset.

Furthermore, Portenier et al. proposed a similar noise-based deep
neural network (DNN) model [PABG20]. These methods can syn-
thesize solid textures from 2D exemplars. However, they focus on
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local appearances and are therefore most suitable for globally uni-
form materials, such as grass and gravel. They do not reproduce the
global structure of wood, i.e., the concentric annual ring pattern.

2.4. Neural Surface Modeling

Neural implicit surface modeling is a technique to represent 3D
shapes or surfaces implicitly using neural networks. Specifically,
MLP networks define a scalar function f (z,x) ∈ R that maps a
latent vector z and 3D position x to a scalar value and where R
is a set of real numbers. By computing the zero-level set of this
function, a 3D surface model can be obtained. The versatility of
neural implicit modeling allows for the generation of diverse mod-
els by manipulating the latent vector input to the MLP network.
Various methods employed encoder networks to compute the latent
vector [MON∗19, CZ19, XWC∗19, JSM∗20]. Meanwhile, Park et
al. [PFS∗19] proposed a method to train the distribution of latent
vectors from the dataset using auto-decoder-style training. Based
on this neural implicit modeling technique proposed by Park et
al. [PFS∗19], we extend its application to modeling a volumetric
material, moving beyond its conventional usage in single-view 3D
reconstruction and mesh reconstruction from point clouds.

A Neural Radiance Field (NeRF) is another highly effective rep-
resentation that implicitly models the surface geometry and ap-
pearance of a shape [MRS∗20, MST∗20]. However, it focuses on
capturing the appearance of the exterior surfaces, rather than the
inside of solid materials.

3. Method

3.1. Overview

Given the exterior surface images of an orthogonal wood block with
annotated annual rings, our goal is to obtain a representation that
recovers its internal structure and renders a textured image of a cut
surface. We propose a two-stage method (Figure 5). In the first stage,
we infer the global structure of the annual ring pattern (Section 3.2).
We represent the internal global structure by a GTF. We train a
generic neural model to predict the GTF value at each 3D location
of a wood cuboid. A predicted GTF is then converted into an ARF to
obtain a volume closer in structure to the actual layered appearance
of wood. In the second stage, we perform local texture synthesis
(Section 3.3). Specifically, we generate a style transfer model for
each of three axis orientations and construct three RGB volumes
by applying the style transfer models to the inferred ARF volume.
Then, we combine the three RGB volumes to render a cut surface.

3.2. Global Structure Inference

3.2.1. Generic Neural GTF Model

In the proposed method, we represent a volumetric annual ring
pattern using the GTF

GT F(p) = g : ∀p ∈R3,g ∈R, (1)

where p is a 3D point inside a block of wood with its pith axis
aligned with the z-axis. The GTF value (g) represents the time (year)
when growth occurred relative to the innermost center (pith). That is

to say, the value of g along the pith is 0 and it increases as the growth
expands outwards from the pith. We represent a generic model of
GTFs using an MLP neural network:

fθ(c,p)≈ GT F(p), (2)

where θ represents the network parameters and c is a latent code.
The generic model covers a wide range of GTFs (variations in annual
ring patterns) using the latent code to embed the variation in GTFs
in a latent space. We inherit the MLP network architecture from
Park et al. [PFS∗19] who developed it for implicit surface modeling
via signed distance fields (SDFs), which are similar to GTFs.

We choose the GTF as representation because of its similarity
with an SDF, and the documented interpolation ability of the 3D
generative SDF modeling network proposed by Park et al. [PFS∗19].
Moreover, we reason that learning a GTF is more preferred over
learning a ARF directly because the GTF contains global informa-
tion while the ARF contains only local information. Moreover, ARF
generated from a smooth GTF is guaranteed to be consistent (year
rings are always closed), which would not be guaranteed in directly
generated ARFs.

3.2.2. Training the Generic Neural GTF Model

During training, we optimize the network parameters θ of our
model together with latent codes ci(i = 0, . . . ,N) for each GT Fi(i =
0, . . . ,N) in a procedurally generated training dataset (Section 3.2.5).
Given N GTFs, we sample M points from each GTF to obtain pairs
{(pi

j,g
i
j)|i ∈ (0,1, ...,N − 1), j ∈ (0,1, ...,M − 1)}, where pi

j ∈ R3

is the 3D position of the jth sample point of GTFi, and gi
j is its

growth time value. Using the sampled training pairs, we optimize
C = {ci} and θ as follows:

argminC,θ ∑
(i, j)

|| fθ(ci,γ(pi
j))−gi

j||1 +wreg||ci||2 (3)

where the first term penalizes the deviation of the predicted GTF
values from the known GTF values, while the second term regular-
izes the distribution of latent vectors. To represent the concentric
structure of annual ring patterns, we apply a cylindrical positional
encoding, which uses a mapping function γ:

γ(p) = (r,arccos(x/r),arcsin(y/r),z), (4)

where r =
√

x2 + y2. We set the coefficient α = 0.012, initialize zi ∈
R50 by sampling from N (0,1/

√
50) [PFS∗19], and use the Adam

optimizer [KB14]. This auto-decoder-style training produces high-
quality generative models without requiring an encoder module.

3.2.3. Inferring a GTF

Given six surface images of a wood block with annotated annual
ring pixels and their growth time values, our goal is to infer the
volumetric GTF that best matches the annotations. We denote the
annotated annual ring pixels as (xk,gk), where xk ∈R3 is the location
on the external surface of the wood block, and gk is the growth time
value of xk. When the pith (innermost tree center) appears on the
exterior surface, we set gk = 1 at the innermost annual ring and
increment the age from there. When the pith does not appear, we
set a tentative value (e.g., gk = 10) for the youngest ring. The age
offset is optimized afterwards (refer to Equation 5).

submitted to COMPUTER GRAPHICS Forum (4/2024).



Larsson, Ijiri, et al. / Learned Inference of Annual Ring Pattern of Solid Wood 5

Wood block exemplar

Inputs

Annotations

Learning a generic GTF model [Park et al. 2019] Optimization (fitting)

Stage 1: Learned Inference of Global Structure (Sec. 3.2)

c(50)

p'(4)

g

MLP network GTF(c,p) ARFGTF

Dataset

Procedural
generationUnfolded block

Output

Rendering of cut surface

Stage 2: Orientation-dependent Local Texture Synthesis (Sec. 3.3)

... ... ......

Loss

Training patch-based image translation [Texler et al. 2020] Applying image translation
RGB color volumes

Figure 5: Method overview. The inputs are the external photographs of a wood block annotated with annual ring traces. The method consists of
two stages: 1) learned inference of the global structure of annual rings and 2) orientation-dependent local texture synthesis. The output is a
rendering of a cut surface inside the wood block.

The inputs to the generic model are a point (pk) and a latent
vector (c). The output is the growth time ( fθ(c,pk)) at the point (pk).
Intuitively, we obtain a GTF for a given wood block by optimizing
for a latent code vector c that results in the smallest differences
between the growth time values (gk) of the annotated year rings
and the network output growth time values fθ(c,pk) of the same
points. However, the network models the GTF of a larger portion of
a tree trunk rather than the block sample (Section 3.2.1). Therefore,
it is necessary to also optimize a transformation (T = (t,M,s)) that
represents the cutout location (t ∈ R3), orientation (M ∈ R3×3), and
relative scale (s ∈ R) of the wood block in the tree trunk portion
(Figure 6). The latent vector c and affine transformation (T̂ ) are
estimated by optimizing

arg min
c,T ,a

∑
k
|| fθ(c,γ(T (xk)))− (gk −a)||1 +wreg||c||2, (5)

where a ∈ N is an integer value representing an age offset.

Cut-out at T

Full GTF fθ(c, p)

Figure 6: Inferring a GTF. We optimize the latent code c and cutout
transformation T .

We optimize Equation 5 in two steps. First, we fix c = 0 and
perform a coarse grid search to obtain t0, m0, s0, and a that minimize
Equation 5. Next, we initialize the optimization with c = 0, t0, m0,
and s0 and then iteratively optimize Equation 5 while keeping the
age offset a fixed. We show an example of visual outputs during the
optimization process in Figure 7.

Iteration: 0           500          5000

Figure 7: Optimization process. Starting from the coarse grid search
result (cube), we iteratively optimize the cutout transformation and
latent code. (Note that the output is visualized as an ARF here, see
Section 3.2.4).

3.2.4. ARF Conversion

To visualize the periodic pattern of the annual rings, we convert the
GTF to an ARF (annual ring field) using the following function:

ARF(p) = (GT F(p) mod 1.0)2 , (6)

where mod is the modulo operator. The result is an ARF that has a
maximum value at a point where the GTF has a whole value (1.0,
2.0, 3.0, etc., Figure 8). Squaring the output results in elongating
the earlywood and shortening the latewood period within an annual
layer, which more closely resembles the transition as we observe it
in real wood samples, compared to not squaring the output.

a. Growth time field (GTF) b. Annual ring field (ARF)

5

10

0.5

1.0

Figure 8: GTF and ARF. The charts plot the values of GTF (a) and
ARF (b) along the red arrow.
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3.2.5. Training Data for GTF Inference

We procedurally generate various GTFs to train our generic model
described in Section 3.2.1. We define a GTF in 2D as

GT F(x,y) =
1

r(φ)

√
(x2 + y2), (7)

where φ is the angle between vector (0,1) and (x,y), while r(φ) is
the radial scaling function at the angle φ. This formula is based on
the parametrization of structural timber [GBGB95]. The variation
in GTF can be obtained by varying r(φ). We extend the 2D GTF to
3D by defining two radius functions on the planes z =−1 and z = 1
and linearly interpolating them:

GT F(x,y,z) =
1

r′(φ,z)

√
(x2 + y2) (8)

r′(φ,z) =

(
1− z+1

2

)
r−1(φ)+

z+1
2

r1(φ), (9)

where r−1(φ) and r1(φ) are radial scaling functions at z =−1 and
z = 1, respectively. This model assumes a variation of growth speed
with the outward direction. For a single direction, we assume con-
stant growing speed across years. Moreover, we assume a straight
(non-curved) pith. These simplifications are reasonable when it
comes to the study of a smaller block cut out from a portion of a
tree stem.

To obtain diverse GTFs, various r(φ) are required (Figure 9).
We equally sample Nc points from the range [0,2π] and constrain
the radius values as r( 2π

Nc i) = rc
i , where i = 0,1, ...,Nc − 1. We

interpolate between the constraints using Laplacian smoothing to
obtain a smooth radius function. We set Nc = 15 and determine
constraint values rc

i by randomly sampling from N (1.0,0.1). For
training our GTF model, we procedurally generated N = 10,000
GTFs and sampled M = 1,600 points for each of them. Among these
sampled points, we sampled 20% of them from the areas close to
pith [−0.1,0.1]× [−0.1,0.1]× [−1.0,1.0] and the remainder from
the entire domain [−1,1]× [−1,1]× [−1,1]. We use this adaptive
sampling because the GTF varies more sharply around the pith.

x
y

z

φ
r-1(φ)

φ r1(φ)

0.0

1.0

0.0

1.0

φ

φ

r1(φ)

r-1(φ)

Figure 9: Procedural generation of GTF. We generate a 3D GTF
(left) from two radial scaling functions r−1(φ) and r1(φ).

3.3. Local Texture Synthesis

To synthesize the anisotropic local appearance of wood, we propose
an orientation-dependent wood texture rendering method using a
style transfer technique. To reproduce the anisotropic appearance of
wood, we build three color volumes for the XY-, YZ-, and ZX-cross-
sections independently using corresponding style transfer models,
training a model for each axis orientation (Section 3.3.1). During
rendering, we combine the three volumes depending on the normal
orientation of a point on the cut surface (Section 3.3.2).

3.3.1. Style Transfer for Axis-aligned Cross-sections

The output of the previous stage—global structure inference—is
the volumetric ARF data. Based on this data and photographs of
the exterior surfaces, we aim to output a the whole volume with a
photorealistic appearance. We achieve this by a patch-based style
transfer technique, which is capable learning from just one image-
pair [TFK∗20]. The style transfer model can thus be retrained from
scratch for the unique wood appearance in each color photograph
and its corresponding ARF image. The training data consists of
many image patches cropped out from the same location of the two
images in the pair.

For the purpose of reproducing the anisotropic appearance of
wood, we build a colored volume for each of the three orthogonal
cross-sections. First, for each side of the cube, a 2D GTF is generated
from the annual ring annotations by 2D RBF interpolation. Second,
the 2D GTF is converted to 2D ARF, and a style transfer network is
trained using the 2D ARF and the corresponding photograph of the
side (Figure 10a). Finally, each of the three style transfer networks
is applied to corresponding cross-sections of the inferred 3D ARF
in a given resolution, resulting in three volumetric textures (RGBXY ,
RGBY Z , and RGBZX ; Figure 10b) to be used in Equation 10 below.
Specifically, we use a patch-based style transfer network presented
by Texler et al. [TFK∗20], which is capable of learning a translation
mapping between two images. It is based on a network architecture
that integrates U-net and ResNet (for details, refer to Texler et
al. [TFK∗20]).

XY

YZ

ZX

a. Train b. Execute

2D ARFs on 
external surfaces

Photographs of
external surfaces

Inferred 3D ARF

RGBXY

RGBYZ

RGBZX

Rendered 
cut surface

c. Combine

Figure 10: Orientation-dependent style transfer. a) For each of three
cross-section orientations (XY, YZ, and ZX), we train a network to
translate from a 2D ARF on the external surface to a photograph
of the same surface. b) Then, we execute the trained models to
translate from a predicted ARF volume to RGB volumes. c) Finally,
we render a cut surface inside the block by combining the three
RGB volumes.

3.3.2. Orientation-dependent Rendering

We combine the three volumetric textures to render a given cut sur-
face (Figure 10c) in an orientation-dependent manner. Specifically,
We compute the color of each point p on the cut surface as follows:

RGB =
|nZ |RGBXY + |nX |RGBY Z + |nY |RGBZX

|nX |+ |nY |+ |nZ |
, (10)
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where RGB is the output color, and n = (nX ,nY ,nZ) is a normal
vector at a surface point p. Equation 10 is designed based on the
assumption that interpolation different directions reproduces the
appearance of in-between directions, which is a rough simplification
of reality. The color volumes corresponding to the XY-, YZ-, and ZX-
planes are denoted by RGBXY , RGBY Z , and RGBZX , respectively.

4. Results and Evaluation

4.1. Implementation Details

The generic GTF model and style transfer models for orientation-
dependent rendering were implemented using PyTorch [PGM∗19]
and a computer with an Intel Core i7 8700K CPU and GeForce
GTX1080ti SLI. For simplicity, we limited the shape of the input
wood block to a cube shape. In total, the time for producing the
volumetric textures of a wood block, including the GTF inference
and style transfer procedures, was approximately 60 minutes (for
details, refer to Section 4.1.1 and Section 4.1.2 below). However,
after texture generation, it is possible to render a surface model at a
real-time rate using Equation 10.

4.1.1. Global Structure Inference Implementation

It took approximately 8.5 hours to train the generic GTF model for
2000 epochs. This model only needs to be trained once. Regarding
GTF inference for a wood exemplar, it took approximately 5 minutes
to manually trace the annual rings and approximately one minute to
optimize the latent vector z and cutout transformation.

4.1.2. Local Texture Synthesis Implementation

The patch-based image style transfer model is trained from scratch
each time the method is applied to a new image pair (an ARF image
and a color photograph). Thus, for each input wood cube sample,
we train three networks (one for each of the three cross-section-
orientations). We set the resolution of the output wood cube to
260× 260× 260. The training data for each network consisted of
Np = 2,000 patches, each of size 36×36. With these settings, it took
approximately 15 min to train a network for 300 epoches and three
minutes to execute the style transfer on the volume, i.e., to apply the
style transfer to each layer of the cube in the given resolution (256).

4.2. Qualitative Evaluation based on Physical Wood Samples

For visual evaluation of our outputs, we generated volumetric images
of several physical wood samples and visually compared rendered
images and photographs (Figure 1, Figure 11). We applied our
method to a multitude of samples including various common hard-
and softwood species, such as oak and pine Figure 11). We prepared
samples by photographing their external surfaces and manually
tracing the annual rings. We then applied our method to generate
volumetric color textures and rendered Stanford bunny models. In
addition, we physically made various cuts of the wood samples to
visually compare the revealed internal textures to those inferred by
our method. Planar cuts were made with a saw (Figure 11, wood
samples 1-5), while 3D geometries were fabricated using a 3-axis
CNC milling machine (Figure 11, wood samples 6-7).

We also fabricated a relatively more complex geometry using a

CNC Lathe machine (Figure 1). Comparing the rendered predic-
tion (Figure 1e) and the fabricated artifact (Figure 1f), we observe a
high resemblance in the location of the the annual ring lines, while
there are discrepancies in local appearance (color, contrast, etc.).
This can be partially explained by the fact that the fabricated artifact
is polished and therefore has a smoother surface finish compared
to the original wood block from which the prediction is made. In
hindsight, it would have been better to not polish the artifact, or alter-
natively, to treat the surface of the original wood block in the same
way as we intended to treat the cut surface. Other explanations of the
discrepancies, apart from inaccuracies of our inference method, are
differences between the physical and rendered lighting conditions,
which we did not meticulously control in our experimental setup.

4.3. Quantitative Evaluation based on Physical Wood Samples

Based on the planar cut wood samples from the qualitative evalu-
ation (Figure 11, wood samples 1-5), we conducted a quantitative
ablation and baseline comparison study to evaluate the accuracy
and robustness of our global structure inference method. We pho-
tographed the cut surface and manually traced their annual rings
while labeling them by year to obtain a ground truth (Figure 12-left).
Then we compared inferred annual ring patterns to the ground truth
by measuring what percentage of the points on the inferred annual
rings is within two different thresholds (1.0 and 2.0 mm) from the
ground truth. We performed this evaluation on outputs created from
full annotations, i.e., complete traces of annual rings of all exte-
rior sides, (Figure 12-middle) and partial annotations, i.e., traces of
annual rings on half of the block only (Figure 12-right). We also
compare the outputs of our method to a baseline method of naïve
radial basis function (RBF) interpolation. We calculate the aver-
ages for each experiment, and compute probability values (p-values)
using the paired t-test [Stu08] with two-tailed distribution.

The results show that our method always has a higher average
accuracy (Table 1). However, the results are not statistically signif-
icant (p-values>0.05), indicating that a higher number of samples
are needed before drawing definite conclusions. That being said, our
method performed best in comparison to the baseline for the partial
annotations, which suggests that our method might be comparatively
robust against partial constraints, which is important because manu-
ally drawing fewer strokes is easier compared to tracing all annual
rings on the exterior surface photographs.

Furthermore, as for computations times, inferring the GTF with
our method took one minute on average, while RBF interpolation
took three minutes. Note that these are the computation times of the
first step of global inference only; they do not include the second
step (style transfer), which would add to the computation times.
Finally, we assume that further acceleration is possible because the
current implementation was done naïvely using PyTorch [PGM∗19].

4.4. Further Experiments

A side-by-side comparison between images produced based on our
orientation-dependent and orientation-agnostic renderings shows
that our method better captures the differences between surface
orientations while also producing more natural-looking color varia-
tions (Figure 13). We also show the effect of varying the orientation
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a. Wood cube b. Drawn annual rings c. Inferred ARF d. Color volume e. Rendred bunny g. Cut surfacef. Rendered cut surface

1

Red oak

Cedar

Cypress

Pine

Pine

Oak

Oak

2

3

4

5

6

7

Figure 11: Photographs of five sample wood cubes and volumetric textures generated using our method. Each row shows a photograph of a) a
wood cube exemplar, b) its six external surfaces with annotations, c) the inferred ARF, d) the color volume after applying style transfer, e) a
rendered Stanford bunny inside the block, f) a rendered cut surface and g) a photograph of the corresponding physically cut surface.
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(ours)

RBF interpolation 
(baseline)

Photograph of 
cut surface

Traced annual 
rings of cut 

surface

ARF

Ground truth (GT)            < 1.0 mm deviation            1.0-2.0 mm deviation          > 2.0 mm deviation

35 mm

35 mm

59 mm

42 mm

45 mm

Figure 12: Quantitative ablation and baseline comparison study. Left: the ground truth annual ring pattern of cut surfaces of physical wood
samples. Middle: inferred results based on full annotations. Right: inferred results based on partial annotations. For a quantitative compilation,
refer to Table 1.

Table 1: Quantitative results measuring the percentage of predicted annual ring lines on a cut surface within different thresholds (1.0 mm and
2.0 mm) of the ground truth (refer to Figure 12).

Full annotation Partial annotation
Wood 1 mm threshold 2 mm threshold 1 mm threshold 2 mm threshold
Sample # Ours (%) Baseline (%) Ours (%) Baseline (%) Ours (%) Baseline (%) Ours (%) Baseline (%)
1 75.8 22.9 86.1 65.9 21.4 23.2 69.2 58.2
2 70.8 93.8 99.7 99.5 66.1 47.7 95.7 66.6
3 13.3 18.8 28.3 40.6 10.3 12.9 55.1 22.3
4 53.1 51.1 92.0 73.6 32.9 16.1 49.0 30.9
5 82.7 93.7 99.9 100.0 50.0 47.9 68.9 58.6
Averages 59.1 56.1 81.2 75.9 36.1 29.6 67.6 47.3
p-values 0.88 0.77 0.61 0.13

of a cut surface relative to the material (Figure 14) and what hap-
pens when we apply different local appearances to the same global
structure (Figure 15).

5. Limitations and Future Work

5.1. Input constraints and requirements

Our current method requires an orthogonal cuboid-shaped wood
exemplar. However, as for method stage one (global structure in-
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Orientation-
dependent 
(ours)

Orientation-
agnostic

Figure 13: Top: Orientation-dependent rendering based-on three color volumes constructed from the XY, YZ, and ZX cross sections,
respectively, and mixed based on the normal direction of a point on the cut surface. Bottom: Orientation-agnostic rendering based on one color
volume constructed from the XY cross-section.

Color volume Varying the orientation around the z-axis

Figure 14: The cut surface is rotated incrementally around the z-axis relative to the material by 15 degrees. This changes the annual ring
pattern on the surface.

ARF volume Different local apperances applied

Figure 15: Cut surfaces with the same ARF (global structure) but different local appearances. These cross-combinations are possible because
of the separation of the two steps of the method—global structure inference and local texture synthesis.

ference), the inference is not theoretically restricted to points on
planar surfaces (the exterior surfaces of the cuboid) because the
GTF model takes any point in 3D as input and produces a growth
time value. That being said, annotating annual rings on arbitrary
shapes would be more challenging as it would require mapping the
texture of the 3D shape to a 2D surface or, alternatively, a 3D anno-
tation interface. Extending stage two of our method (local texture
synthesis) to arbitrary shapes can be challenging because our current
orientation-dependent rendering method assumes that we can obtain
the appearance of three orthogonal planes of a block shape. In the
future, we plan to extend our method to support arbitrary shapes.

Another limitation is that our method requires manually annotated
annual rings for reconstructing the GTF. It is robust against incom-
plete annotations (refer to Section 4.3), but nevertheless, we plan to
develop an automatic annual ring extraction method based on style
transfer and edge extraction techniques.

5.2. Quality of output: Global structure inference

Our method cannot generate large-scale distortions caused by the
grafting of the tree, such as knots (Figure 16a). It also does not
reconstruct small-scale distortions of the GTF appearing on an ex-
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ternal surface (Figure 16b). Owing to this limitation, the small-scale
distortions of the ARFs of all our outputs look similar in terms of
level of noise and smoothness. This is partially due to our training
data. Therefore, we plan to improve the accuracy and diversity of
the ARF reconstruction by increasing the training dataset diversity.
Moreover, as for evaluation of the inferred pattern, our quantitative
study (Section 4.3) is based on five samples from four different wood
species. The results are not statistically significant, indicating that it
would be desirable to create a dataset of a larger quantity of samples
to enable more robust evaluation. It would also be preferable to test
our system on a larger number of different wood species.

5.3. Quality of output: Local texture synthesis

Our rendered prediction is made with a simple reflection model
(ambient and diffuse light), resulting in a more unobstructed and
clearly visible texture pattern, while the photographs of the artifacts
sometimes have additional real-world effects such as shadows, focus
blur, and highlights. A more advanced rendering model could solve
some of these issues in the future. Moreover, although rare, the style
transfer produces unsatisfactory results when the annual rings on an
external surface are too sparse (Figure 17). This is because the style
transfer is trained using small patches of the input images, and some
of the patches do not contain any annual rings if they are too sparse.
Further, it is computationally costly to train multiple style transfer
models for each sample. Therefore, we plan to investigate how a
single conditional style transfer model for each species of wood can
be learned and used for the reconstruction of the local appearance.
On the one hand, this could accelerate the style transfer process
and mitigate failure cases caused by too few rings (Figure 17). On
the other hand, it might yield poorer results when applied to wood
samples that significantly deviate from the appearance of those in
the training dataset.

5.4. Future applications

It is common to decompose complex models into multiple parts
due to constraints in CNC fabrication of wood artifacts [MLS∗18,

b. Small GTF distortions (wave) 

Wavy Not wavy

a. Large GTF distortions (knot)

Figure 16: Failure cases. Our method does not succeed in reproduc-
ing a) very large or b) very small distortions of the GTF.

Train Execute

Figure 17: Failure case. The style transfer gives unsatisfactory out-
puts when the annual rings are too sparse on an external surface.
The white box indicates a patch without structural information.

HMA15]. Inferring the internal pattern using our method can help
systems in matching the texture of the parts for improved appear-
ance of the assembled artifact. This is similar to previous systems
matching patterns over garment seams [WSH19]. Another possible
future application is to complement shape completion with material
texture completion for cases when there is an incomplete 3D scan of
a solid wood object. Moreover, previous work proposed a method
for strength-optimization of the orientation of artifacts fabricated
using Fused Deposition Modeling (FDM) 3D printing, leveraging
the anisotropic property of the filament bounds [US13]. A similar
technique could be applied to increase the strength of wood artifacts
fabricated by CNC milling or similar methods, after obtaining a
model of its volumetric structure.

6. Conclusion

In this paper, we introduced a new research problem of inferring the
volumetric texture of solid wood based on photographs of the visible
exterior surfaces. We addressed this problem by a two-stage method.
First, we employed a learned model for inferring the volumetric
global structure. We demonstrated that this model is marginally
more accurate than a baseline of basic interpolation under full an-
notations and substantially better under partial annotations, while
being three times faster. Second, we proposed a novel orientation-
dependent rendering method that replicates the anisotropic appear-
ance of the local features and colors. The proposed system is useful
for physical applications—such as subtractive manufacturing—and
also for virtual ones—such as object breaking.
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BOUBEKEUR T., MITRA N. J.: Matformer: A generative model
for procedural materials. ACM Trans. Graph. 41, 4 (jul 2022).
URL: https://doi.org/10.1145/3528223.3530173, doi:
10.1145/3528223.3530173. 3

[GJB∗20] GUO J., JIANG H., BENES B., DEUSSEN O., ZHANG X.,
LISCHINSKI D., HUANG H.: Inverse procedural modeling of branching
structures by inferring l-systems. ACM Trans. Graph. 39, 5 (jun 2020).
URL: https://doi.org/10.1145/3394105, doi:10.1145/
3394105. 3

[GRGH18] GUTIERREZ J., RABIN J., GALERNE B., HURTUT T.: On De-
mand Solid Texture Synthesis Using Deep 3D Networks. working paper or
preprint, Dec. 2018. URL: https://hal.archives-ouvertes.
fr/hal-01678122. 3

[HDR19] HU Y., DORSEY J., RUSHMEIER H.: A novel framework for
inverse procedural texture modeling. ACM Trans. Graph. 38, 6 (nov
2019). URL: https://doi.org/10.1145/3355089.3356516,
doi:10.1145/3355089.3356516. 3

[HGH∗22] HU Y., GUERRERO P., HASAN M., RUSHMEIER H., DE-
SCHAINTRE V.: Node graph optimization using differentiable prox-
ies. In ACM SIGGRAPH 2022 Conference Proceedings (New York,
NY, USA, 2022), SIGGRAPH ’22, Association for Computing Machin-
ery. URL: https://doi.org/10.1145/3528233.3530733,
doi:10.1145/3528233.3530733. 3

[HHD∗22] HU Y., HE C., DESCHAINTRE V., DORSEY J., RUSHMEIER
H.: An inverse procedural modeling pipeline for svbrdf maps. ACM Trans.
Graph. 41, 2 (jan 2022). URL: https://doi.org/10.1145/
3502431, doi:10.1145/3502431. 3

[HMA15] HERHOLZ P., MATUSIK W., ALEXA M.: Approximating free-
form geometry with height fields for manufacturing. Comput. Graph.
Forum 34, 2 (may 2015), 239–251. URL: https://doi.org/10.
1111/cgf.12556, doi:10.1111/cgf.12556. 11

[HMR19] HENZLER P., MITRA N. J., , RITSCHEL T.: Learning a neu-
ral 3d texture space from 2d exemplars. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2019). 3

[IOI06] IJIRI T., OWADA S., IGARASHI T.: The sketch L-system: Global
control of tree modeling using free-form strokes. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) (2006), vol. 4073 LNCS.
doi:10.1007/11795018{\_}13. 3

[JSM∗20] JIANG C., SUD A., MAKADIA A., HUANG J., NIESSNER M.,
FUNKHOUSER T.: Local implicit grid representations for 3d scenes. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2020). 4

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 4

[KEBK05] KWATRA V., ESSA I., BOBICK A., KWATRA N.: Texture
optimization for example-based synthesis. In ACM SIGGRAPH 2005
Papers (New York, NY, USA, 2005), SIGGRAPH ’05, Association for
Computing Machinery, p. 795–802. URL: https://doi.org/10.
1145/1186822.1073263, doi:10.1145/1186822.1073263.
3

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D., WONG T.-T.: Solid texture synthesis from
2d exemplars. ACM Trans. Graph. 26, 3 (jul 2007), 2–es.
URL: https://doi.org/10.1145/1276377.1276380, doi:
10.1145/1276377.1276380. 3

[KSG∗15] KRATT J., SPICKER M., GUAYAQUIL A., FISER M., PIRK S.,
DEUSSEN O., HART J. C., BENES B.: Woodification: User-Controlled
Cambial Growth Modeling. Computer Graphics Forum (2015). doi:
10.1111/cgf.12566. 2, 3

[LDHM16] LIU A. J., DONG Z., HAŠAN M., MARSCHNER S.: Simulat-
ing the structure and texture of solid wood. ACM Trans. Graph. 35, 6 (nov
2016). URL: https://doi.org/10.1145/2980179.2980255,
doi:10.1145/2980179.2980255. 3

[Lin68] LINDENMAYER A.: Mathematical models for cellular interactions
in development I. Filaments with one-sided inputs. Journal of Theoretical
Biology 18, 3 (1968). doi:10.1016/0022-5193(68)90079-9.
3

[LIY∗22] LARSSON M., IJIRI T., YOSHIDA H., HUBER J. A. J.,
FREDRIKSSON M., BROMAN O., IGARASHI T.: Procedural textur-
ing of solid wood with knots. ACM Trans. Graph. 41, 4 (jul 2022).
URL: https://doi.org/10.1145/3528223.3530081, doi:
10.1145/3528223.3530081. 2, 3

[LP00] LEFEBVRE L., POULIN P.: Analysis and synthesis of structural
textures. In Graphics Interface 2000 (May 2000), pp. 77–86. 3

[MLS∗18] MUNTONI A., LIVESU M., SCATENI R., SHEFFER A.,
PANOZZO D.: Axis-aligned height-field block decomposition of 3d
shapes. ACM Trans. Graph. 37, 5 (oct 2018). URL: https://doi.
org/10.1145/3204458, doi:10.1145/3204458. 11

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2019). 4

[MPW06] MANN J., PLANK M., WILKINS A.: Tree growth and wood
formation — applications of anisotropic surface growth. In Proceedings
of the Mathematics in Industry Study Group (2006), pp. 153–192. 2, 3

[MRS∗20] MARTIN-BRUALLA R., RADWAN N., SAJJADI M. S. M.,
BARRON J. T., DOSOVITSKIY A., DUCKWORTH D.: Nerf in the
wild: Neural radiance fields for unconstrained photo collections. CoRR
abs/2008.02268 (2020). URL: https://arxiv.org/abs/2008.
02268, arXiv:2008.02268. 4

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I (Berlin, Heidelberg, 2020), Springer-Verlag, p. 405–421. URL:
https://doi.org/10.1007/978-3-030-58452-8_24,
doi:10.1007/978-3-030-58452-8_24. 4

[MWAM05] MARSCHNER S. R., WESTIN S. H., ARBREE A., MOON
J. T.: Measuring and modeling the appearance of finished wood.
In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
SIGGRAPH ’05, Association for Computing Machinery, p. 727–734.
URL: https://doi.org/10.1145/1186822.1073254, doi:
10.1145/1186822.1073254. 3

[OMN∗19] OECHSLE M., MESCHEDER L. M., NIEMEYER M.,
STRAUSS T., GEIGER A.: Texture fields: Learning texture represen-
tations in function space. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (2019), 4530–4539. 3

[PABG20] PORTENIER T., ARJOMAND BIGDELI S., GOKSEL
O.: Gramgan: Deep 3d texture synthesis from 2d exemplars.
In Advances in Neural Information Processing Systems (2020),
Larochelle H., Ranzato M., Hadsell R., Balcan M., Lin H., (Eds.),
vol. 33, Curran Associates, Inc., pp. 6994–7004. URL: https:
//proceedings.neurips.cc/paper_files/paper/2020/
file/4df5bde009073d3ef60da64d736724d6-Paper.pdf.
3

[PCOS10] PIETRONI N., CIGNONI P., OTADUY M., SCOPIGNO R.:
Solid-texture synthesis: A survey. IEEE Computer Graphics and Ap-
plications 30, 4 (2010), 74–89. doi:10.1109/MCG.2009.153. 3

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R., LOVE-
GROVE S.: Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (2019), vol. 2019-
June. doi:10.1109/CVPR.2019.00025. 2, 4

submitted to COMPUTER GRAPHICS Forum (4/2024).

https://doi.org/10.1145/3528223.3530173
http://dx.doi.org/10.1145/3528223.3530173
http://dx.doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3394105
http://dx.doi.org/10.1145/3394105
http://dx.doi.org/10.1145/3394105
https://hal.archives-ouvertes.fr/hal-01678122
https://hal.archives-ouvertes.fr/hal-01678122
https://doi.org/10.1145/3355089.3356516
http://dx.doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3528233.3530733
http://dx.doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3502431
https://doi.org/10.1145/3502431
http://dx.doi.org/10.1145/3502431
https://doi.org/10.1111/cgf.12556
https://doi.org/10.1111/cgf.12556
http://dx.doi.org/10.1111/cgf.12556
http://dx.doi.org/10.1007/11795018{_}13
https://doi.org/10.1145/1186822.1073263
https://doi.org/10.1145/1186822.1073263
http://dx.doi.org/10.1145/1186822.1073263
https://doi.org/10.1145/1276377.1276380
http://dx.doi.org/10.1145/1276377.1276380
http://dx.doi.org/10.1145/1276377.1276380
http://dx.doi.org/10.1111/cgf.12566
http://dx.doi.org/10.1111/cgf.12566
https://doi.org/10.1145/2980179.2980255
http://dx.doi.org/10.1145/2980179.2980255
http://dx.doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1145/3528223.3530081
http://dx.doi.org/10.1145/3528223.3530081
http://dx.doi.org/10.1145/3528223.3530081
https://doi.org/10.1145/3204458
https://doi.org/10.1145/3204458
http://dx.doi.org/10.1145/3204458
https://arxiv.org/abs/2008.02268
https://arxiv.org/abs/2008.02268
http://arxiv.org/abs/2008.02268
https://doi.org/10.1007/978-3-030-58452-8_24
http://dx.doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1145/1186822.1073254
http://dx.doi.org/10.1145/1186822.1073254
http://dx.doi.org/10.1145/1186822.1073254
https://proceedings.neurips.cc/paper_files/paper/2020/file/4df5bde009073d3ef60da64d736724d6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4df5bde009073d3ef60da64d736724d6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4df5bde009073d3ef60da64d736724d6-Paper.pdf
http://dx.doi.org/10.1109/MCG.2009.153
http://dx.doi.org/10.1109/CVPR.2019.00025


Larsson, Ijiri, et al. / Learned Inference of Annual Ring Pattern of Solid Wood 13

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
DESMAISON A., KOPF A., YANG E., DEVITO Z., RAISON M., TEJANI
A., CHILAMKURTHY S., STEINER B., FANG L., BAI J., CHINTALA
S.: Pytorch: An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. 7

[POB∗07] PIETRONI N., OTADUY M. A., BICKEL B., GANOVELLI F.,
GROSS M.: Texturing Internal Surfaces from a Few Cross Sections.
Computer Graphics Forum (2007). doi:10.1111/j.1467-8659.
2007.01087.x. 3

[SPH11] SELLIER D., PLANK M. J., HARRINGTON J. J.: A mathemat-
ical framework for modelling cambial surface evolution using a level
set method. Annals of Botany 108, 6 (2011). doi:10.1093/aob/
mcr067. 2

[Stu08] STUDENT: The probable error of a mean. Biometrika (1908),
1–25. 7

[TFK∗20] TEXLER O., FUTSCHIK D., KUČERA M., JAMRIŠKA O., SO-
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